Matches in SemOpenAlex for { <https://semopenalex.org/work/W2002179951> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2002179951 endingPage "145" @default.
- W2002179951 startingPage "139" @default.
- W2002179951 abstract "In recent years depleted oil reservoirs have received special interest as carbon storage reservoirs because of their potential to offset costs through collaboration with enhanced oil recovery projects. Modeling is currently being conducted to evaluate potential risks to groundwater associated with leakage of fluids from depleted oil reservoirs used for storage of CO2. Modeling results reported here focused on understanding how toxic organic compounds found in oil will distribute between the various phases (oil, vapor, and brine) within a storage reservoir after introduction of CO2, understanding the migration potential of these compounds, and assessing potential groundwater impacts should leakage occur. Three model scenarios were conducted to evaluate how organic components in oil will distribute among the phases of interest (oil, CO2, and brine). The three cases were 50 wt.% oil and 50 wt.% water, 90 wt.% CO2 and 10 wt.% oil, and 90 wt.% CO2, 5 wt.% oil, and 5% wt.% water. Several key organic compounds were considered in this study based upon their occurrence in oil at significant concentrations, relative toxicity, or because they can serve as surrogate compounds for other more highly toxic compounds for which required input data are not available. The organic contaminants of interest (COI) selected for this study were benzene, toluene, naphthalene, phenanthrene, and anthracene. Partitioning of organic compounds between crude oil and supercritical CO2 was modeled using the Peng–Robinson equation of state over temperature and pressure conditions that represent the entire subsurface system of the scenario under investigation (from those relevant to deep geologic carbon storage environments to near surface conditions). Results indicate that for the modeled oil reservoir conditions (75 °C, and 21,520 kPa) negligible amounts of the COI dissolve into the aqueous phase. When CO2 is introduced into the reservoir such that the final composition of the reservoir is 90 wt.% CO2 and 10 wt.% oil, a significant fraction of the oil dissolves into the vapor phase. As the vapor phase moves up through the stratigraphic column, pressures and temperatures decrease, resulting in significant condensation of oil components. The heaviest organic components condense early in this process (at higher pressures and temperatures), while the lighter components tend to remain in the vapor phase until much lower pressures and temperatures are reached. Based on the model assumptions, the final concentrations of COI to reach an aquifer at 1520 kPa and 25 °C were quite significant for benzene and toluene, whereas the concentrations of polynuclear aromatic hydrocarbons that reach the aquifer were very small. This work demonstrates a methodology that can provide COI source term concentrations in CO2 leaking from a reservoir and entering an overlying aquifer for use in risk assessments." @default.
- W2002179951 created "2016-06-24" @default.
- W2002179951 creator A5057143553 @default.
- W2002179951 creator A5061084408 @default.
- W2002179951 date "2014-08-01" @default.
- W2002179951 modified "2023-09-24" @default.
- W2002179951 title "Source term modeling for evaluating the potential impacts to groundwater of fluids escaping from a depleted oil reservoir used for carbon sequestration" @default.
- W2002179951 cites W1975356678 @default.
- W2002179951 cites W1984336647 @default.
- W2002179951 cites W1985499900 @default.
- W2002179951 cites W1990919651 @default.
- W2002179951 cites W1992623294 @default.
- W2002179951 cites W1993668342 @default.
- W2002179951 cites W2001241816 @default.
- W2002179951 cites W2008781620 @default.
- W2002179951 cites W2013858037 @default.
- W2002179951 cites W2016260004 @default.
- W2002179951 cites W2029865324 @default.
- W2002179951 cites W2040345569 @default.
- W2002179951 cites W2041396316 @default.
- W2002179951 cites W2063244626 @default.
- W2002179951 cites W2064065546 @default.
- W2002179951 cites W2069779877 @default.
- W2002179951 cites W2070428839 @default.
- W2002179951 cites W2078261188 @default.
- W2002179951 cites W2079435264 @default.
- W2002179951 cites W2093242607 @default.
- W2002179951 cites W2094818470 @default.
- W2002179951 cites W2129288307 @default.
- W2002179951 doi "https://doi.org/10.1016/j.ijggc.2014.05.009" @default.
- W2002179951 hasPublicationYear "2014" @default.
- W2002179951 type Work @default.
- W2002179951 sameAs 2002179951 @default.
- W2002179951 citedByCount "6" @default.
- W2002179951 countsByYear W20021799512016 @default.
- W2002179951 countsByYear W20021799512017 @default.
- W2002179951 countsByYear W20021799512018 @default.
- W2002179951 countsByYear W20021799512019 @default.
- W2002179951 countsByYear W20021799512020 @default.
- W2002179951 crossrefType "journal-article" @default.
- W2002179951 hasAuthorship W2002179951A5057143553 @default.
- W2002179951 hasAuthorship W2002179951A5061084408 @default.
- W2002179951 hasConcept C107872376 @default.
- W2002179951 hasConcept C118419359 @default.
- W2002179951 hasConcept C127313418 @default.
- W2002179951 hasConcept C127413603 @default.
- W2002179951 hasConcept C178790620 @default.
- W2002179951 hasConcept C185592680 @default.
- W2002179951 hasConcept C187320778 @default.
- W2002179951 hasConcept C24345647 @default.
- W2002179951 hasConcept C2776891815 @default.
- W2002179951 hasConcept C2776957854 @default.
- W2002179951 hasConcept C2779681308 @default.
- W2002179951 hasConcept C39432304 @default.
- W2002179951 hasConcept C548081761 @default.
- W2002179951 hasConcept C548895740 @default.
- W2002179951 hasConcept C68189081 @default.
- W2002179951 hasConcept C76177295 @default.
- W2002179951 hasConcept C78762247 @default.
- W2002179951 hasConcept C87717796 @default.
- W2002179951 hasConceptScore W2002179951C107872376 @default.
- W2002179951 hasConceptScore W2002179951C118419359 @default.
- W2002179951 hasConceptScore W2002179951C127313418 @default.
- W2002179951 hasConceptScore W2002179951C127413603 @default.
- W2002179951 hasConceptScore W2002179951C178790620 @default.
- W2002179951 hasConceptScore W2002179951C185592680 @default.
- W2002179951 hasConceptScore W2002179951C187320778 @default.
- W2002179951 hasConceptScore W2002179951C24345647 @default.
- W2002179951 hasConceptScore W2002179951C2776891815 @default.
- W2002179951 hasConceptScore W2002179951C2776957854 @default.
- W2002179951 hasConceptScore W2002179951C2779681308 @default.
- W2002179951 hasConceptScore W2002179951C39432304 @default.
- W2002179951 hasConceptScore W2002179951C548081761 @default.
- W2002179951 hasConceptScore W2002179951C548895740 @default.
- W2002179951 hasConceptScore W2002179951C68189081 @default.
- W2002179951 hasConceptScore W2002179951C76177295 @default.
- W2002179951 hasConceptScore W2002179951C78762247 @default.
- W2002179951 hasConceptScore W2002179951C87717796 @default.
- W2002179951 hasLocation W20021799511 @default.
- W2002179951 hasOpenAccess W2002179951 @default.
- W2002179951 hasPrimaryLocation W20021799511 @default.
- W2002179951 hasRelatedWork W1989103078 @default.
- W2002179951 hasRelatedWork W2000586944 @default.
- W2002179951 hasRelatedWork W2045346106 @default.
- W2002179951 hasRelatedWork W2060208897 @default.
- W2002179951 hasRelatedWork W2185294435 @default.
- W2002179951 hasRelatedWork W2292869128 @default.
- W2002179951 hasRelatedWork W2393407415 @default.
- W2002179951 hasRelatedWork W2587016489 @default.
- W2002179951 hasRelatedWork W3137525367 @default.
- W2002179951 hasRelatedWork W3207557017 @default.
- W2002179951 hasVolume "27" @default.
- W2002179951 isParatext "false" @default.
- W2002179951 isRetracted "false" @default.
- W2002179951 magId "2002179951" @default.
- W2002179951 workType "article" @default.