Matches in SemOpenAlex for { <https://semopenalex.org/work/W2002185057> ?p ?o ?g. }
- W2002185057 endingPage "1135" @default.
- W2002185057 startingPage "1118" @default.
- W2002185057 abstract "Kernel-based learning strategies have recently emerged as powerful tools for hyperspectral classification. However, designing optimal kernels is still a challenging issue that needs to be further investigated. In this paper, we propose a multiple data-dependent kernel (MDK) for classification of HSI. Core ideas of the MDK are twofold: (1) optimizing the combination of multiple basic kernels in merit of centered kernel alignment (CKA), which can evaluate the degree of agreement between a kernel and a learning task; (2) optimizing the coefficients of data-dependent kernel (DK) by virtue of Fisher’s discriminant analysis (FDA), which can measure the between-class and within-class separability of the data simultaneously. Furthermore, we apply the proposed MDK to two state-of-the-art classifiers, i.e. support vector machine (SVM) and sparse representation classifier (SRC). Experimental results conducted on three benchmark HSIs with different spectral and spatial resolutions validate the feasibility of the proposed methods." @default.
- W2002185057 created "2016-06-24" @default.
- W2002185057 creator A5028584961 @default.
- W2002185057 creator A5050960882 @default.
- W2002185057 date "2015-02-01" @default.
- W2002185057 modified "2023-10-16" @default.
- W2002185057 title "Multiple data-dependent kernel for classification of hyperspectral images" @default.
- W2002185057 cites W1979078563 @default.
- W2002185057 cites W1990231296 @default.
- W2002185057 cites W1993658663 @default.
- W2002185057 cites W1997565609 @default.
- W2002185057 cites W2001298023 @default.
- W2002185057 cites W2011084767 @default.
- W2002185057 cites W2022882306 @default.
- W2002185057 cites W2037798659 @default.
- W2002185057 cites W2041406732 @default.
- W2002185057 cites W2049623605 @default.
- W2002185057 cites W2053154970 @default.
- W2002185057 cites W2064422318 @default.
- W2002185057 cites W2078495963 @default.
- W2002185057 cites W2080680225 @default.
- W2002185057 cites W2081418685 @default.
- W2002185057 cites W2092032134 @default.
- W2002185057 cites W2103094532 @default.
- W2002185057 cites W2126326837 @default.
- W2002185057 cites W2127271355 @default.
- W2002185057 cites W2128148283 @default.
- W2002185057 cites W2136251662 @default.
- W2002185057 cites W2140389641 @default.
- W2002185057 cites W2144348684 @default.
- W2002185057 cites W2146611644 @default.
- W2002185057 cites W2164330327 @default.
- W2002185057 cites W2164821350 @default.
- W2002185057 cites W2166163522 @default.
- W2002185057 cites W2171566342 @default.
- W2002185057 doi "https://doi.org/10.1016/j.eswa.2014.09.004" @default.
- W2002185057 hasPublicationYear "2015" @default.
- W2002185057 type Work @default.
- W2002185057 sameAs 2002185057 @default.
- W2002185057 citedByCount "17" @default.
- W2002185057 countsByYear W20021850572015 @default.
- W2002185057 countsByYear W20021850572016 @default.
- W2002185057 countsByYear W20021850572018 @default.
- W2002185057 countsByYear W20021850572019 @default.
- W2002185057 countsByYear W20021850572022 @default.
- W2002185057 crossrefType "journal-article" @default.
- W2002185057 hasAuthorship W2002185057A5028584961 @default.
- W2002185057 hasAuthorship W2002185057A5050960882 @default.
- W2002185057 hasConcept C114614502 @default.
- W2002185057 hasConcept C119857082 @default.
- W2002185057 hasConcept C122280245 @default.
- W2002185057 hasConcept C12267149 @default.
- W2002185057 hasConcept C13280743 @default.
- W2002185057 hasConcept C140417398 @default.
- W2002185057 hasConcept C153180895 @default.
- W2002185057 hasConcept C154945302 @default.
- W2002185057 hasConcept C159078339 @default.
- W2002185057 hasConcept C185798385 @default.
- W2002185057 hasConcept C205649164 @default.
- W2002185057 hasConcept C2776879701 @default.
- W2002185057 hasConcept C2780724565 @default.
- W2002185057 hasConcept C33923547 @default.
- W2002185057 hasConcept C41008148 @default.
- W2002185057 hasConcept C74193536 @default.
- W2002185057 hasConcept C75866337 @default.
- W2002185057 hasConcept C95623464 @default.
- W2002185057 hasConceptScore W2002185057C114614502 @default.
- W2002185057 hasConceptScore W2002185057C119857082 @default.
- W2002185057 hasConceptScore W2002185057C122280245 @default.
- W2002185057 hasConceptScore W2002185057C12267149 @default.
- W2002185057 hasConceptScore W2002185057C13280743 @default.
- W2002185057 hasConceptScore W2002185057C140417398 @default.
- W2002185057 hasConceptScore W2002185057C153180895 @default.
- W2002185057 hasConceptScore W2002185057C154945302 @default.
- W2002185057 hasConceptScore W2002185057C159078339 @default.
- W2002185057 hasConceptScore W2002185057C185798385 @default.
- W2002185057 hasConceptScore W2002185057C205649164 @default.
- W2002185057 hasConceptScore W2002185057C2776879701 @default.
- W2002185057 hasConceptScore W2002185057C2780724565 @default.
- W2002185057 hasConceptScore W2002185057C33923547 @default.
- W2002185057 hasConceptScore W2002185057C41008148 @default.
- W2002185057 hasConceptScore W2002185057C74193536 @default.
- W2002185057 hasConceptScore W2002185057C75866337 @default.
- W2002185057 hasConceptScore W2002185057C95623464 @default.
- W2002185057 hasFunder F4320321001 @default.
- W2002185057 hasFunder F4320322769 @default.
- W2002185057 hasIssue "3" @default.
- W2002185057 hasLocation W20021850571 @default.
- W2002185057 hasOpenAccess W2002185057 @default.
- W2002185057 hasPrimaryLocation W20021850571 @default.
- W2002185057 hasRelatedWork W1550105856 @default.
- W2002185057 hasRelatedWork W1969163824 @default.
- W2002185057 hasRelatedWork W1998497042 @default.
- W2002185057 hasRelatedWork W2022862073 @default.
- W2002185057 hasRelatedWork W2049539567 @default.
- W2002185057 hasRelatedWork W2092483655 @default.
- W2002185057 hasRelatedWork W2604913466 @default.
- W2002185057 hasRelatedWork W2898882859 @default.