Matches in SemOpenAlex for { <https://semopenalex.org/work/W2002189912> ?p ?o ?g. }
- W2002189912 endingPage "133" @default.
- W2002189912 startingPage "121" @default.
- W2002189912 abstract "Abstract Complex network has become an important way to analyze the massive disordered information of complex systems, and its community structure property is indispensable to discover the potential functionality of these systems. The research on uncovering the community structure of networks has attracted great attentions from various fields in recent years. Many community detection approaches have been proposed based on the modularity optimization. Among them, the algorithms which optimize one initial solution to a better one are easy to get into local optima. Moreover, the algorithms which are susceptible to the optimized order are easy to obtain unstable solutions. In addition, the algorithms which simultaneously optimize a population of solutions have high computational complexity, and thus they are difficult to apply to practical problems. To solve the above problems, in this study, we propose a fast memetic algorithm with multi-level learning strategies for community detection by optimizing modularity. The proposed algorithm adopts genetic algorithm to optimize a population of solutions and uses the proposed multi-level learning strategies to accelerate the optimization process. The multi-level learning strategies are devised based on the potential knowledge of the node, community and partition structures of networks, and they work on the network at nodes, communities and network partitions levels, respectively. Extensive experiments on both benchmarks and real-world networks demonstrate that compared with the state-of-the-art community detection algorithms, the proposed algorithm has effective performance on discovering the community structure of networks." @default.
- W2002189912 created "2016-06-24" @default.
- W2002189912 creator A5033300023 @default.
- W2002189912 creator A5039451864 @default.
- W2002189912 creator A5066912525 @default.
- W2002189912 creator A5085352453 @default.
- W2002189912 creator A5091227928 @default.
- W2002189912 date "2014-06-01" @default.
- W2002189912 modified "2023-10-16" @default.
- W2002189912 title "Multi-level learning based memetic algorithm for community detection" @default.
- W2002189912 cites W1971421925 @default.
- W2002189912 cites W1975086969 @default.
- W2002189912 cites W1977079728 @default.
- W2002189912 cites W1980040350 @default.
- W2002189912 cites W1985625141 @default.
- W2002189912 cites W1988561380 @default.
- W2002189912 cites W1991408655 @default.
- W2002189912 cites W2008156343 @default.
- W2002189912 cites W2011843642 @default.
- W2002189912 cites W2016108481 @default.
- W2002189912 cites W2017588197 @default.
- W2002189912 cites W2020504153 @default.
- W2002189912 cites W2029373408 @default.
- W2002189912 cites W2030696657 @default.
- W2002189912 cites W2038920443 @default.
- W2002189912 cites W2040379910 @default.
- W2002189912 cites W2047092184 @default.
- W2002189912 cites W2047940964 @default.
- W2002189912 cites W2052069128 @default.
- W2002189912 cites W2057504236 @default.
- W2002189912 cites W2061099285 @default.
- W2002189912 cites W2064786700 @default.
- W2002189912 cites W2065223082 @default.
- W2002189912 cites W2066828202 @default.
- W2002189912 cites W2080909935 @default.
- W2002189912 cites W2086805702 @default.
- W2002189912 cites W2090048942 @default.
- W2002189912 cites W2094234423 @default.
- W2002189912 cites W2095189226 @default.
- W2002189912 cites W2095293504 @default.
- W2002189912 cites W2103980282 @default.
- W2002189912 cites W2104274529 @default.
- W2002189912 cites W2108614537 @default.
- W2002189912 cites W2111811973 @default.
- W2002189912 cites W2112090702 @default.
- W2002189912 cites W2116322295 @default.
- W2002189912 cites W2120512286 @default.
- W2002189912 cites W2124209874 @default.
- W2002189912 cites W2127048411 @default.
- W2002189912 cites W2130476447 @default.
- W2002189912 cites W2131681506 @default.
- W2002189912 cites W2132013054 @default.
- W2002189912 cites W2139818818 @default.
- W2002189912 cites W2143142281 @default.
- W2002189912 cites W2151936673 @default.
- W2002189912 cites W2155167324 @default.
- W2002189912 cites W2155262811 @default.
- W2002189912 cites W2158443610 @default.
- W2002189912 cites W2158601988 @default.
- W2002189912 cites W2159397589 @default.
- W2002189912 cites W2159427933 @default.
- W2002189912 cites W2161138645 @default.
- W2002189912 cites W2164998314 @default.
- W2002189912 cites W2169490594 @default.
- W2002189912 cites W2170186790 @default.
- W2002189912 cites W2171552940 @default.
- W2002189912 cites W2320144048 @default.
- W2002189912 cites W2963932731 @default.
- W2002189912 cites W3099209941 @default.
- W2002189912 cites W3100069540 @default.
- W2002189912 cites W3101413764 @default.
- W2002189912 doi "https://doi.org/10.1016/j.asoc.2014.02.003" @default.
- W2002189912 hasPublicationYear "2014" @default.
- W2002189912 type Work @default.
- W2002189912 sameAs 2002189912 @default.
- W2002189912 citedByCount "98" @default.
- W2002189912 countsByYear W20021899122014 @default.
- W2002189912 countsByYear W20021899122015 @default.
- W2002189912 countsByYear W20021899122016 @default.
- W2002189912 countsByYear W20021899122017 @default.
- W2002189912 countsByYear W20021899122018 @default.
- W2002189912 countsByYear W20021899122019 @default.
- W2002189912 countsByYear W20021899122020 @default.
- W2002189912 countsByYear W20021899122021 @default.
- W2002189912 countsByYear W20021899122022 @default.
- W2002189912 countsByYear W20021899122023 @default.
- W2002189912 crossrefType "journal-article" @default.
- W2002189912 hasAuthorship W2002189912A5033300023 @default.
- W2002189912 hasAuthorship W2002189912A5039451864 @default.
- W2002189912 hasAuthorship W2002189912A5066912525 @default.
- W2002189912 hasAuthorship W2002189912A5085352453 @default.
- W2002189912 hasAuthorship W2002189912A5091227928 @default.
- W2002189912 hasConcept C119857082 @default.
- W2002189912 hasConcept C126255220 @default.
- W2002189912 hasConcept C154945302 @default.
- W2002189912 hasConcept C33923547 @default.
- W2002189912 hasConcept C35129592 @default.
- W2002189912 hasConcept C41008148 @default.