Matches in SemOpenAlex for { <https://semopenalex.org/work/W2002192641> ?p ?o ?g. }
- W2002192641 endingPage "40670" @default.
- W2002192641 startingPage "40667" @default.
- W2002192641 abstract "Intracellular cholesterol redistribution between membranes and its subsequent esterification are critical aspects of lipid homeostasis that prevent free sterol toxicity. To identify genes that mediate sterol trafficking, we screened for yeast mutants that were inviable in the absence of sterol esterification. Mutations in the novel gene, ARV1, render cells dependent on sterol esterification for growth, nystatin-sensitive, temperature-sensitive, and anaerobically inviable. Cells lacking Arv1p display altered intracellular sterol distribution and are defective in sterol uptake, consistent with a role for Arv1p in trafficking sterol into the plasma membrane. Human ARV1, a predicted sequence ortholog of yeast ARV1, complements the defects associated with deletion of the yeast gene. The genes are predicted to encode transmembrane proteins with potential zinc-binding motifs. We propose that ARV1 is a novel mediator of eukaryotic sterol homeostasis. Intracellular cholesterol redistribution between membranes and its subsequent esterification are critical aspects of lipid homeostasis that prevent free sterol toxicity. To identify genes that mediate sterol trafficking, we screened for yeast mutants that were inviable in the absence of sterol esterification. Mutations in the novel gene, ARV1, render cells dependent on sterol esterification for growth, nystatin-sensitive, temperature-sensitive, and anaerobically inviable. Cells lacking Arv1p display altered intracellular sterol distribution and are defective in sterol uptake, consistent with a role for Arv1p in trafficking sterol into the plasma membrane. Human ARV1, a predicted sequence ortholog of yeast ARV1, complements the defects associated with deletion of the yeast gene. The genes are predicted to encode transmembrane proteins with potential zinc-binding motifs. We propose that ARV1 is a novel mediator of eukaryotic sterol homeostasis. acyl-coenzyme A:cholesterol O-acyltransferase low density lipoprotein sterol regulatory element-binding protein(s) plasma membrane endoplasmic reticulum Yeast extract-peptone dextrose synthetic complete dextrose 5-fluoro orotic acid base pair polymerase chain reaction Arv1 homology domain Sterols are essential structural and regulatory components of eukaryotic cellular membranes (1Bloch K.E. CRC Crit. Rev. Biochem. 1983; 14: 47-92Crossref PubMed Scopus (514) Google Scholar, 2Parks L.W. Smith S.J. Crowley J.H. Lipids. 1995; 30: 227-230Crossref PubMed Scopus (104) Google Scholar). However, cholesterol over-accumulation is cytotoxic (3Jackson R.L. Gotto A.M.J. Atherosclerosis. 1976; 1: 1-21Google Scholar), necessitating mechanisms to maintain this metabolite at appropriate levels. A pivotal component of this homeostasis is the esterification of free sterol by acyl-coenzyme A:cholesterol O-acyltransferase (ACAT)1 (4Chang T.-Y. Doolittle G.M. Boyer P. The Enzymes. Academic Press, New York1983: 523-539Google Scholar, 5Xu X.X. Tabas I. J. Biol. Chem. 1991; 266: 17040-17048Abstract Full Text PDF PubMed Google Scholar). Indeed, the inhibition of ACAT in sterol-loaded cells induces cell death when extracellular sterol acceptors such as high density lipoproteins are absent (6Warner G.J. Stoudt G. Bamberger M. Johnson W.J. Rothblat G.H. J. Biol. Chem. 1995; 270: 5772-5778Abstract Full Text Full Text PDF PubMed Scopus (223) Google Scholar, 7Kellner-Weibel G. Geng Y.J. Rothblat G.H. Atherosclerosis. 1999; 146: 309-319Abstract Full Text Full Text PDF PubMed Scopus (74) Google Scholar).Intracellular cholesterol redistribution mediates a number of responses to elevated free sterol levels. These include elevated ACAT activity, down-regulated sterol and fatty acid biosynthesis, and reduced lipoprotein uptake via LDL receptors (8Tabas I. Weiland D.A. Tall A.R. J. Biol. Chem. 1986; 261: 3147-3155Abstract Full Text PDF PubMed Google Scholar, 9Brown M.S. Goldstein J.L. Proc. Natl. Acad. Sci. U. S. A. 1999; 96: 11041-11048Crossref PubMed Scopus (1093) Google Scholar). The latter two events reflect changes in transcriptional activation by sterol regulatory element-binding proteins (SREBPs) in response to sterol accumulation in regulatory pools (9Brown M.S. Goldstein J.L. Proc. Natl. Acad. Sci. U. S. A. 1999; 96: 11041-11048Crossref PubMed Scopus (1093) Google Scholar), whereas ACAT activity is allosterically regulated by substrate supply (10Cheng D. Chang C.C. Qu X. Chang T.Y. J. Biol. Chem. 1995; 270: 685-695Abstract Full Text Full Text PDF PubMed Scopus (144) Google Scholar). Sterols are maintained at a high concentration in the plasma membrane (PM) relative to the endoplasmic reticulum (ER) (1Bloch K.E. CRC Crit. Rev. Biochem. 1983; 14: 47-92Crossref PubMed Scopus (514) Google Scholar, 2Parks L.W. Smith S.J. Crowley J.H. Lipids. 1995; 30: 227-230Crossref PubMed Scopus (104) Google Scholar), where SREBP and ACAT reside. Thus trafficking of sterol to and from the ER is a critical component of sterol homeostasis.The process of sterol trafficking is poorly understood at the molecular level. In certain cell types, caveolin influences what has been termed “fast” movement of cholesterol to plasma membrane cholesterol-rich microdomains (caveolae) (11Smart E.J. Ying Y. Donzell W.C. Anderson R.G. J. Biol. Chem. 1996; 271: 29427-29435Abstract Full Text Full Text PDF PubMed Scopus (456) Google Scholar, 12Uittenbogaard A. Ying Y. Smart E.J. J. Biol. Chem. 1998; 273: 6525-6532Abstract Full Text Full Text PDF PubMed Scopus (272) Google Scholar). Mutations in the NiemannPick type C (NPC1) gene result in accumulation of LDL-derived cholesterol in the lysosome (13Carstea E.D. et al.Science. 1997; 277: 228-231Crossref PubMed Scopus (1199) Google Scholar, 14Loftus S.K. Morris J.A. Carstea E.D. Gu J.Z. Cummings C. Brown A. Ellison J. Ohno K. Rosenfeld M.A. Tagle D.A. Pentchev P.G. Pavan W.J. Science. 1997; 277: 232-235Crossref PubMed Scopus (692) Google Scholar). However, not all cells express caveolin, and the movement of endogenously synthesized cholesterol to the plasma membrane in NPC1-deficient cells is normal (15Cruz J.C. Chang T.Y. J. Biol. Chem. 2001; 276: 41309-41316Abstract Full Text Full Text PDF Scopus (43) Google Scholar).To identify novel genes that mediate sterol trafficking in all higher cells, we utilized the genetically tractable model eukaryote,Saccharomyces cerevisiae (budding yeast). We reasoned that dependence on sterol esterification for viability would be one criterion for identifying novel sterol-trafficking genes. Yeast strains lacking the ACAT-related enzymes (encoded by the ARE1 and ARE2 genes) contain no steryl ester (16Yang H. Bard M. Bruner D.A. Gleeson A. Deckelbaum R.J. Aljinovic G. Pohl T. Rothstein R. Sturley S.L. Science. 1996; 272: 1353-1356Crossref PubMed Scopus (223) Google Scholar, 17Yu C. Kennedy N.J. Chang C.C.Y. Rothblatt J.A. J. Biol. Chem. 1996; 271: 24157-24163Abstract Full Text Full Text PDF PubMed Scopus (113) Google Scholar), down-regulate sterol biosynthesis (16Yang H. Bard M. Bruner D.A. Gleeson A. Deckelbaum R.J. Aljinovic G. Pohl T. Rothstein R. Sturley S.L. Science. 1996; 272: 1353-1356Crossref PubMed Scopus (223) Google Scholar, 18Arthington-Skaggs B.A. Crowell D.N. Yang H. Sturley S.L. Bard M. FEBS Lett. 1996; 392: 161-165Crossref PubMed Scopus (59) Google Scholar), and grow normally. In a screen for genes required for viability in the absence of the ARE genes, we isolated yeast and humanARV1 (ARE2 required forviability). We demonstrate that ARV1 is required for sterol uptake and distribution in yeast. Sterols are essential structural and regulatory components of eukaryotic cellular membranes (1Bloch K.E. CRC Crit. Rev. Biochem. 1983; 14: 47-92Crossref PubMed Scopus (514) Google Scholar, 2Parks L.W. Smith S.J. Crowley J.H. Lipids. 1995; 30: 227-230Crossref PubMed Scopus (104) Google Scholar). However, cholesterol over-accumulation is cytotoxic (3Jackson R.L. Gotto A.M.J. Atherosclerosis. 1976; 1: 1-21Google Scholar), necessitating mechanisms to maintain this metabolite at appropriate levels. A pivotal component of this homeostasis is the esterification of free sterol by acyl-coenzyme A:cholesterol O-acyltransferase (ACAT)1 (4Chang T.-Y. Doolittle G.M. Boyer P. The Enzymes. Academic Press, New York1983: 523-539Google Scholar, 5Xu X.X. Tabas I. J. Biol. Chem. 1991; 266: 17040-17048Abstract Full Text PDF PubMed Google Scholar). Indeed, the inhibition of ACAT in sterol-loaded cells induces cell death when extracellular sterol acceptors such as high density lipoproteins are absent (6Warner G.J. Stoudt G. Bamberger M. Johnson W.J. Rothblat G.H. J. Biol. Chem. 1995; 270: 5772-5778Abstract Full Text Full Text PDF PubMed Scopus (223) Google Scholar, 7Kellner-Weibel G. Geng Y.J. Rothblat G.H. Atherosclerosis. 1999; 146: 309-319Abstract Full Text Full Text PDF PubMed Scopus (74) Google Scholar). Intracellular cholesterol redistribution mediates a number of responses to elevated free sterol levels. These include elevated ACAT activity, down-regulated sterol and fatty acid biosynthesis, and reduced lipoprotein uptake via LDL receptors (8Tabas I. Weiland D.A. Tall A.R. J. Biol. Chem. 1986; 261: 3147-3155Abstract Full Text PDF PubMed Google Scholar, 9Brown M.S. Goldstein J.L. Proc. Natl. Acad. Sci. U. S. A. 1999; 96: 11041-11048Crossref PubMed Scopus (1093) Google Scholar). The latter two events reflect changes in transcriptional activation by sterol regulatory element-binding proteins (SREBPs) in response to sterol accumulation in regulatory pools (9Brown M.S. Goldstein J.L. Proc. Natl. Acad. Sci. U. S. A. 1999; 96: 11041-11048Crossref PubMed Scopus (1093) Google Scholar), whereas ACAT activity is allosterically regulated by substrate supply (10Cheng D. Chang C.C. Qu X. Chang T.Y. J. Biol. Chem. 1995; 270: 685-695Abstract Full Text Full Text PDF PubMed Scopus (144) Google Scholar). Sterols are maintained at a high concentration in the plasma membrane (PM) relative to the endoplasmic reticulum (ER) (1Bloch K.E. CRC Crit. Rev. Biochem. 1983; 14: 47-92Crossref PubMed Scopus (514) Google Scholar, 2Parks L.W. Smith S.J. Crowley J.H. Lipids. 1995; 30: 227-230Crossref PubMed Scopus (104) Google Scholar), where SREBP and ACAT reside. Thus trafficking of sterol to and from the ER is a critical component of sterol homeostasis. The process of sterol trafficking is poorly understood at the molecular level. In certain cell types, caveolin influences what has been termed “fast” movement of cholesterol to plasma membrane cholesterol-rich microdomains (caveolae) (11Smart E.J. Ying Y. Donzell W.C. Anderson R.G. J. Biol. Chem. 1996; 271: 29427-29435Abstract Full Text Full Text PDF PubMed Scopus (456) Google Scholar, 12Uittenbogaard A. Ying Y. Smart E.J. J. Biol. Chem. 1998; 273: 6525-6532Abstract Full Text Full Text PDF PubMed Scopus (272) Google Scholar). Mutations in the NiemannPick type C (NPC1) gene result in accumulation of LDL-derived cholesterol in the lysosome (13Carstea E.D. et al.Science. 1997; 277: 228-231Crossref PubMed Scopus (1199) Google Scholar, 14Loftus S.K. Morris J.A. Carstea E.D. Gu J.Z. Cummings C. Brown A. Ellison J. Ohno K. Rosenfeld M.A. Tagle D.A. Pentchev P.G. Pavan W.J. Science. 1997; 277: 232-235Crossref PubMed Scopus (692) Google Scholar). However, not all cells express caveolin, and the movement of endogenously synthesized cholesterol to the plasma membrane in NPC1-deficient cells is normal (15Cruz J.C. Chang T.Y. J. Biol. Chem. 2001; 276: 41309-41316Abstract Full Text Full Text PDF Scopus (43) Google Scholar). To identify novel genes that mediate sterol trafficking in all higher cells, we utilized the genetically tractable model eukaryote,Saccharomyces cerevisiae (budding yeast). We reasoned that dependence on sterol esterification for viability would be one criterion for identifying novel sterol-trafficking genes. Yeast strains lacking the ACAT-related enzymes (encoded by the ARE1 and ARE2 genes) contain no steryl ester (16Yang H. Bard M. Bruner D.A. Gleeson A. Deckelbaum R.J. Aljinovic G. Pohl T. Rothstein R. Sturley S.L. Science. 1996; 272: 1353-1356Crossref PubMed Scopus (223) Google Scholar, 17Yu C. Kennedy N.J. Chang C.C.Y. Rothblatt J.A. J. Biol. Chem. 1996; 271: 24157-24163Abstract Full Text Full Text PDF PubMed Scopus (113) Google Scholar), down-regulate sterol biosynthesis (16Yang H. Bard M. Bruner D.A. Gleeson A. Deckelbaum R.J. Aljinovic G. Pohl T. Rothstein R. Sturley S.L. Science. 1996; 272: 1353-1356Crossref PubMed Scopus (223) Google Scholar, 18Arthington-Skaggs B.A. Crowell D.N. Yang H. Sturley S.L. Bard M. FEBS Lett. 1996; 392: 161-165Crossref PubMed Scopus (59) Google Scholar), and grow normally. In a screen for genes required for viability in the absence of the ARE genes, we isolated yeast and humanARV1 (ARE2 required forviability). We demonstrate that ARV1 is required for sterol uptake and distribution in yeast. We thank Richard Deckelbaum, Michael Hampsey, Jessica Rich, Rodney Rothstein, Ira Tabas, Alan Tall, and members of the Sturley laboratory for helpful discussions." @default.
- W2002192641 created "2016-06-24" @default.
- W2002192641 creator A5013275067 @default.
- W2002192641 creator A5023841024 @default.
- W2002192641 creator A5027241044 @default.
- W2002192641 creator A5044015896 @default.
- W2002192641 creator A5050157488 @default.
- W2002192641 creator A5079700856 @default.
- W2002192641 creator A5088261697 @default.
- W2002192641 date "2000-12-01" @default.
- W2002192641 modified "2023-09-27" @default.
- W2002192641 title "Mutations in Yeast ARV1 Alter Intracellular Sterol Distribution and Are Complemented by Human ARV1" @default.
- W2002192641 cites W1499450468 @default.
- W2002192641 cites W1520546332 @default.
- W2002192641 cites W1581881472 @default.
- W2002192641 cites W1606057223 @default.
- W2002192641 cites W1690989171 @default.
- W2002192641 cites W1963523017 @default.
- W2002192641 cites W1967711052 @default.
- W2002192641 cites W1969583685 @default.
- W2002192641 cites W1970761589 @default.
- W2002192641 cites W1973782344 @default.
- W2002192641 cites W1979763781 @default.
- W2002192641 cites W1982641958 @default.
- W2002192641 cites W1989024478 @default.
- W2002192641 cites W1999899846 @default.
- W2002192641 cites W2003797932 @default.
- W2002192641 cites W2018917785 @default.
- W2002192641 cites W2019497539 @default.
- W2002192641 cites W2028123717 @default.
- W2002192641 cites W2029596636 @default.
- W2002192641 cites W2034855418 @default.
- W2002192641 cites W2036662864 @default.
- W2002192641 cites W2036788087 @default.
- W2002192641 cites W2049055505 @default.
- W2002192641 cites W2049738765 @default.
- W2002192641 cites W2058140918 @default.
- W2002192641 cites W2064153193 @default.
- W2002192641 cites W2066812102 @default.
- W2002192641 cites W2081467822 @default.
- W2002192641 cites W2083304121 @default.
- W2002192641 cites W2088432812 @default.
- W2002192641 cites W2102865022 @default.
- W2002192641 cites W2134893181 @default.
- W2002192641 cites W2137186081 @default.
- W2002192641 cites W2145699815 @default.
- W2002192641 cites W2155362872 @default.
- W2002192641 cites W2157740023 @default.
- W2002192641 cites W2158714788 @default.
- W2002192641 cites W2159654630 @default.
- W2002192641 cites W2168016965 @default.
- W2002192641 cites W2342784434 @default.
- W2002192641 cites W4241302198 @default.
- W2002192641 doi "https://doi.org/10.1074/jbc.c000710200" @default.
- W2002192641 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/11063737" @default.
- W2002192641 hasPublicationYear "2000" @default.
- W2002192641 type Work @default.
- W2002192641 sameAs 2002192641 @default.
- W2002192641 citedByCount "98" @default.
- W2002192641 countsByYear W20021926412012 @default.
- W2002192641 countsByYear W20021926412013 @default.
- W2002192641 countsByYear W20021926412014 @default.
- W2002192641 countsByYear W20021926412015 @default.
- W2002192641 countsByYear W20021926412016 @default.
- W2002192641 countsByYear W20021926412017 @default.
- W2002192641 countsByYear W20021926412018 @default.
- W2002192641 countsByYear W20021926412019 @default.
- W2002192641 countsByYear W20021926412020 @default.
- W2002192641 countsByYear W20021926412021 @default.
- W2002192641 countsByYear W20021926412022 @default.
- W2002192641 countsByYear W20021926412023 @default.
- W2002192641 crossrefType "journal-article" @default.
- W2002192641 hasAuthorship W2002192641A5013275067 @default.
- W2002192641 hasAuthorship W2002192641A5023841024 @default.
- W2002192641 hasAuthorship W2002192641A5027241044 @default.
- W2002192641 hasAuthorship W2002192641A5044015896 @default.
- W2002192641 hasAuthorship W2002192641A5050157488 @default.
- W2002192641 hasAuthorship W2002192641A5079700856 @default.
- W2002192641 hasAuthorship W2002192641A5088261697 @default.
- W2002192641 hasBestOaLocation W20021926411 @default.
- W2002192641 hasConcept C110121322 @default.
- W2002192641 hasConcept C134306372 @default.
- W2002192641 hasConcept C185592680 @default.
- W2002192641 hasConcept C2778163477 @default.
- W2002192641 hasConcept C2778718757 @default.
- W2002192641 hasConcept C2779222958 @default.
- W2002192641 hasConcept C33923547 @default.
- W2002192641 hasConcept C55493867 @default.
- W2002192641 hasConcept C79879829 @default.
- W2002192641 hasConcept C86803240 @default.
- W2002192641 hasConcept C95444343 @default.
- W2002192641 hasConceptScore W2002192641C110121322 @default.
- W2002192641 hasConceptScore W2002192641C134306372 @default.
- W2002192641 hasConceptScore W2002192641C185592680 @default.
- W2002192641 hasConceptScore W2002192641C2778163477 @default.
- W2002192641 hasConceptScore W2002192641C2778718757 @default.
- W2002192641 hasConceptScore W2002192641C2779222958 @default.
- W2002192641 hasConceptScore W2002192641C33923547 @default.