Matches in SemOpenAlex for { <https://semopenalex.org/work/W2002257904> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2002257904 endingPage "285" @default.
- W2002257904 startingPage "275" @default.
- W2002257904 abstract "This study was set out to establish artificial neural networks (ANN) as an alternative to regression methods (multiple linear, principal component and partial least squares regression) to predict consumer liking from trained sensory panel data. The sensory profile and acceptability of 10 market samples of beef bouillon products were measured. The products were distinct as evaluated by the trained sensory panel. A total of 100 regular beef bouillon product users from Manila measured overall liking, flavour, aftertaste and mouthfeel of the products. Curve fitting method was applied to identify sensory drivers of consumer liking. The sensory drivers of consumer liking were used as explanatory variables in artificial neural networks and regression methods. To overcome the limitations of regression methods we have used artificial neural network techniques to model consumer liking score as a function of trained sensory panel scores and achieved quite encouraging results. Our simulation experiments show that though the regression methods such as multiple linear regression (MLR), principal component regression (PCR) and partial least square (PLS) give an accurate prediction of consumer liking scores, this approach is not robust enough to handle the variations normally encountered in trained sensory panel data. ANNs were trained using the sensory panel raw data and transformed data. The networks trained with sensory panel raw data achieved 98% correct learning, the testing was in a range of 28–35%. Suitable transformation method was applied to reduce the variations in trained sensory panel raw data. The networks trained with transformed sensory panel data achieved about 80–90% correct learning and 80–95% correct testing. It is shown that due to its excellent noise tolerance property and ability to predict more than one type of consumer liking using a single model, the ANN approach promises to be an effective modelling tool." @default.
- W2002257904 created "2016-06-24" @default.
- W2002257904 creator A5027924889 @default.
- W2002257904 creator A5057530220 @default.
- W2002257904 creator A5062521849 @default.
- W2002257904 creator A5083400553 @default.
- W2002257904 creator A5089770783 @default.
- W2002257904 date "2007-03-01" @default.
- W2002257904 modified "2023-09-27" @default.
- W2002257904 title "Prediction of consumer liking from trained sensory panel information: Evaluation of neural networks" @default.
- W2002257904 cites W1978031736 @default.
- W2002257904 cites W1979488119 @default.
- W2002257904 cites W1983097169 @default.
- W2002257904 cites W2001804574 @default.
- W2002257904 cites W2017530427 @default.
- W2002257904 cites W2020908118 @default.
- W2002257904 cites W2021781817 @default.
- W2002257904 cites W2028594577 @default.
- W2002257904 cites W2038066182 @default.
- W2002257904 cites W2101927907 @default.
- W2002257904 cites W2154813507 @default.
- W2002257904 cites W2160333357 @default.
- W2002257904 cites W4250396044 @default.
- W2002257904 cites W4253069484 @default.
- W2002257904 doi "https://doi.org/10.1016/j.foodqual.2006.01.001" @default.
- W2002257904 hasPublicationYear "2007" @default.
- W2002257904 type Work @default.
- W2002257904 sameAs 2002257904 @default.
- W2002257904 citedByCount "35" @default.
- W2002257904 countsByYear W20022579042012 @default.
- W2002257904 countsByYear W20022579042013 @default.
- W2002257904 countsByYear W20022579042014 @default.
- W2002257904 countsByYear W20022579042015 @default.
- W2002257904 countsByYear W20022579042016 @default.
- W2002257904 countsByYear W20022579042018 @default.
- W2002257904 countsByYear W20022579042020 @default.
- W2002257904 countsByYear W20022579042021 @default.
- W2002257904 countsByYear W20022579042022 @default.
- W2002257904 countsByYear W20022579042023 @default.
- W2002257904 crossrefType "journal-article" @default.
- W2002257904 hasAuthorship W2002257904A5027924889 @default.
- W2002257904 hasAuthorship W2002257904A5057530220 @default.
- W2002257904 hasAuthorship W2002257904A5062521849 @default.
- W2002257904 hasAuthorship W2002257904A5083400553 @default.
- W2002257904 hasAuthorship W2002257904A5089770783 @default.
- W2002257904 hasConcept C105795698 @default.
- W2002257904 hasConcept C119857082 @default.
- W2002257904 hasConcept C152877465 @default.
- W2002257904 hasConcept C153180895 @default.
- W2002257904 hasConcept C154945302 @default.
- W2002257904 hasConcept C15744967 @default.
- W2002257904 hasConcept C180747234 @default.
- W2002257904 hasConcept C22354355 @default.
- W2002257904 hasConcept C27438332 @default.
- W2002257904 hasConcept C33923547 @default.
- W2002257904 hasConcept C41008148 @default.
- W2002257904 hasConcept C48921125 @default.
- W2002257904 hasConcept C50644808 @default.
- W2002257904 hasConcept C74887250 @default.
- W2002257904 hasConcept C83546350 @default.
- W2002257904 hasConcept C94487597 @default.
- W2002257904 hasConceptScore W2002257904C105795698 @default.
- W2002257904 hasConceptScore W2002257904C119857082 @default.
- W2002257904 hasConceptScore W2002257904C152877465 @default.
- W2002257904 hasConceptScore W2002257904C153180895 @default.
- W2002257904 hasConceptScore W2002257904C154945302 @default.
- W2002257904 hasConceptScore W2002257904C15744967 @default.
- W2002257904 hasConceptScore W2002257904C180747234 @default.
- W2002257904 hasConceptScore W2002257904C22354355 @default.
- W2002257904 hasConceptScore W2002257904C27438332 @default.
- W2002257904 hasConceptScore W2002257904C33923547 @default.
- W2002257904 hasConceptScore W2002257904C41008148 @default.
- W2002257904 hasConceptScore W2002257904C48921125 @default.
- W2002257904 hasConceptScore W2002257904C50644808 @default.
- W2002257904 hasConceptScore W2002257904C74887250 @default.
- W2002257904 hasConceptScore W2002257904C83546350 @default.
- W2002257904 hasConceptScore W2002257904C94487597 @default.
- W2002257904 hasIssue "2" @default.
- W2002257904 hasLocation W20022579041 @default.
- W2002257904 hasOpenAccess W2002257904 @default.
- W2002257904 hasPrimaryLocation W20022579041 @default.
- W2002257904 hasRelatedWork W2057527240 @default.
- W2002257904 hasRelatedWork W2365630391 @default.
- W2002257904 hasRelatedWork W2374703177 @default.
- W2002257904 hasRelatedWork W2376884412 @default.
- W2002257904 hasRelatedWork W2566756418 @default.
- W2002257904 hasRelatedWork W2592325956 @default.
- W2002257904 hasRelatedWork W2600619166 @default.
- W2002257904 hasRelatedWork W2981666789 @default.
- W2002257904 hasRelatedWork W4210660526 @default.
- W2002257904 hasRelatedWork W760609589 @default.
- W2002257904 hasVolume "18" @default.
- W2002257904 isParatext "false" @default.
- W2002257904 isRetracted "false" @default.
- W2002257904 magId "2002257904" @default.
- W2002257904 workType "article" @default.