Matches in SemOpenAlex for { <https://semopenalex.org/work/W2002257949> ?p ?o ?g. }
- W2002257949 abstract "Large-scale Monte Carlo simulations are employed to study phase transitions in the three-dimensional compact Abelian Higgs model in adjoint representations of the matter field, labeled by an integer q, for $q=2,3,4,5.$ We also study various limiting cases of the model, such as the ${Z}_{q}$ lattice gauge theory, dual to the three-dimensional (3D) spin model, and the 3D $mathrm{XY}$ spin model which is dual to the ${Z}_{q}$ lattice gauge theory in the limit $stackrel{ensuremath{rightarrow}}{q}ensuremath{infty}.$ In addition, for benchmark purposes, we study the square lattice eight-vertex model, which is exactly solvable and features nonuniversal critical exponents. We have computed the first, second, and third moments of the action to locate the phase transition of the compact Abelian Higgs model in the parameter space $(ensuremath{beta},ensuremath{kappa}),$ where $ensuremath{beta}$ is the coupling constant of the matter term and $ensuremath{kappa}$ is the coupling constant of the gauge term. We have found that for $q=3,$ the three-dimensional compact Abelian Higgs model has a phase-transition line ${ensuremath{beta}}_{mathrm{c}}(ensuremath{kappa})$ which is first order for $ensuremath{kappa}$ below a finite tricritical value ${ensuremath{kappa}}_{mathrm{tri}}$ and second order above. The $ensuremath{beta}=ensuremath{infty}$ first order phase transition persists for finite $ensuremath{beta}$ and joins the second order phase transition at a tricritical point $({ensuremath{beta}}_{mathrm{tri}},{ensuremath{kappa}}_{mathrm{tri}})=(1.23ifmmodepmelsetextpmfi{}0.03,1.73ifmmodepmelsetextpmfi{}0.03).$ For all other integer $q>~2$ we have considered, the entire phase-transition line ${ensuremath{beta}}_{c}(ensuremath{kappa})$ is critical. We have used finite-size scaling of the second and third moments of the action to extract critical exponents $ensuremath{alpha}$ and $ensuremath{nu}$ without invoking hyperscaling, for the $mathrm{XY}$ model, the ${Z}_{2}$ spin and lattice gauge models, as well as the compact Abelian Higgs model for $q=2$ and $q=3.$ In all cases, we have found that for practical system sizes, the third moment gives scaling of superior quality compared to the second moment. We have also computed the exponent ratio for the $q=2$ compact $U(1)$ Higgs model along the critical line, finding a continuously varying ratio $(1+ensuremath{alpha})/ensuremath{nu},$ as well as continuously varying $ensuremath{alpha}$ and $ensuremath{nu}$ as $ensuremath{kappa}$ is increased from $0.76$ to $ensuremath{infty},$ with the Ising universality class $(1+ensuremath{alpha})/ensuremath{nu}=1.763$ as a limiting case for $stackrel{ensuremath{rightarrow}}{ensuremath{beta}}ensuremath{infty},stackrel{ensuremath{rightarrow}}{ensuremath{kappa}}0.761,$ and the $mathrm{XY}$ universality class $(1+ensuremath{alpha})/ensuremath{nu}=1.467$ as a limiting case for $stackrel{ensuremath{rightarrow}}{ensuremath{beta}}0.454,stackrel{ensuremath{rightarrow}}{ensuremath{kappa}}ensuremath{infty}.$ However, the critical line exhibits a remarkable resilience of ${Z}_{2}$ criticality as $ensuremath{beta}$ is reduced along the critical line. Thus, the three-dimensional compact Abelian Higgs model for $q=2$ appears to represent a fixed-line theory defining a new universality class. We relate these results to a recent microscopic description of zero-temperature quantum phase transitions within insulating phases of strongly correlated systems in two spatial dimensions, proposing the above to be the universality class of the zero-temperature quantum phase transition from a Mott-Hubbard insulator to a charge-fractionalized insulator in two spatial dimensions, which thus is that of the 3D Ising model for a considerable range of parameters." @default.
- W2002257949 created "2016-06-24" @default.
- W2002257949 creator A5014004618 @default.
- W2002257949 creator A5033058876 @default.
- W2002257949 creator A5036914810 @default.
- W2002257949 creator A5069959185 @default.
- W2002257949 creator A5079558277 @default.
- W2002257949 date "2003-05-15" @default.
- W2002257949 modified "2023-10-17" @default.
- W2002257949 title "Phase structure of (2+1)-dimensional compact lattice gauge theories and the transition from Mott insulator to fractionalized insulator" @default.
- W2002257949 cites W1521505820 @default.
- W2002257949 cites W1576153461 @default.
- W2002257949 cites W1964766898 @default.
- W2002257949 cites W1966330174 @default.
- W2002257949 cites W1966460425 @default.
- W2002257949 cites W1979923486 @default.
- W2002257949 cites W1980180066 @default.
- W2002257949 cites W1982496004 @default.
- W2002257949 cites W1982789111 @default.
- W2002257949 cites W1984782544 @default.
- W2002257949 cites W1989275948 @default.
- W2002257949 cites W1995248277 @default.
- W2002257949 cites W1996591999 @default.
- W2002257949 cites W1998608640 @default.
- W2002257949 cites W2004465029 @default.
- W2002257949 cites W2010210905 @default.
- W2002257949 cites W2016061011 @default.
- W2002257949 cites W2017001068 @default.
- W2002257949 cites W2017573166 @default.
- W2002257949 cites W2018849513 @default.
- W2002257949 cites W2023883372 @default.
- W2002257949 cites W2024505564 @default.
- W2002257949 cites W2031690341 @default.
- W2002257949 cites W2032706954 @default.
- W2002257949 cites W2032770640 @default.
- W2002257949 cites W2038494817 @default.
- W2002257949 cites W2042088397 @default.
- W2002257949 cites W2043662702 @default.
- W2002257949 cites W2044099903 @default.
- W2002257949 cites W2048563856 @default.
- W2002257949 cites W2048828038 @default.
- W2002257949 cites W2055496088 @default.
- W2002257949 cites W2057002866 @default.
- W2002257949 cites W2057342351 @default.
- W2002257949 cites W2064396559 @default.
- W2002257949 cites W2065566139 @default.
- W2002257949 cites W2066384249 @default.
- W2002257949 cites W2066666321 @default.
- W2002257949 cites W2066783027 @default.
- W2002257949 cites W2067888501 @default.
- W2002257949 cites W2070170903 @default.
- W2002257949 cites W2070812785 @default.
- W2002257949 cites W2084427721 @default.
- W2002257949 cites W2087980400 @default.
- W2002257949 cites W2089692473 @default.
- W2002257949 cites W2093934933 @default.
- W2002257949 cites W2095528808 @default.
- W2002257949 cites W2096427041 @default.
- W2002257949 cites W2126885955 @default.
- W2002257949 cites W2136565179 @default.
- W2002257949 cites W2163120301 @default.
- W2002257949 cites W2261736664 @default.
- W2002257949 cites W2471905043 @default.
- W2002257949 cites W2963459164 @default.
- W2002257949 cites W3023162579 @default.
- W2002257949 cites W3037528155 @default.
- W2002257949 cites W3041753540 @default.
- W2002257949 cites W3098040877 @default.
- W2002257949 cites W3098072010 @default.
- W2002257949 cites W3102384145 @default.
- W2002257949 cites W3124308113 @default.
- W2002257949 cites W4238135994 @default.
- W2002257949 doi "https://doi.org/10.1103/physrevb.67.205104" @default.
- W2002257949 hasPublicationYear "2003" @default.
- W2002257949 type Work @default.
- W2002257949 sameAs 2002257949 @default.
- W2002257949 citedByCount "31" @default.
- W2002257949 countsByYear W20022579492013 @default.
- W2002257949 countsByYear W20022579492015 @default.
- W2002257949 countsByYear W20022579492019 @default.
- W2002257949 countsByYear W20022579492020 @default.
- W2002257949 countsByYear W20022579492021 @default.
- W2002257949 countsByYear W20022579492022 @default.
- W2002257949 countsByYear W20022579492023 @default.
- W2002257949 crossrefType "journal-article" @default.
- W2002257949 hasAuthorship W2002257949A5014004618 @default.
- W2002257949 hasAuthorship W2002257949A5033058876 @default.
- W2002257949 hasAuthorship W2002257949A5036914810 @default.
- W2002257949 hasAuthorship W2002257949A5069959185 @default.
- W2002257949 hasAuthorship W2002257949A5079558277 @default.
- W2002257949 hasBestOaLocation W20022579492 @default.
- W2002257949 hasConcept C114614502 @default.
- W2002257949 hasConcept C121332964 @default.
- W2002257949 hasConcept C136170076 @default.
- W2002257949 hasConcept C149288129 @default.
- W2002257949 hasConcept C158129726 @default.
- W2002257949 hasConcept C181830111 @default.
- W2002257949 hasConcept C183276030 @default.
- W2002257949 hasConcept C26873012 @default.
- W2002257949 hasConcept C33923547 @default.