Matches in SemOpenAlex for { <https://semopenalex.org/work/W2002278475> ?p ?o ?g. }
- W2002278475 endingPage "6297" @default.
- W2002278475 startingPage "6283" @default.
- W2002278475 abstract "In this study we construct a thermal and mechanical model for the genesis of oceanic crust. Magma is halted in its ascent within the oceanic crust when it reaches a freezing horizon, where the dilational volume change associated with magma freezing leads to viscous stresses that favor magma ponding near the freezing horizon. To model the steady state thermal impact of crustal accretion via dike injection and pillow flows, we treat all crustal accretion in rocks cooler than a magma solidus to occur in a narrow 250-m-wide dike-like region centered about the ridge axis. The rest of the oceanic crust is modeled to be emplaced as a steady state magma lens directly beneath the solidus freezing horizon where the steady state emplacement rate is determined by the constraint that this lens supply all crust that is not emplaced through diking/extrusion above the magma lens. If hydrothermal heat transport within crustal rocks cooler than 600oC removes heat 8 times as efficiently as heat conduction, then we find that a steady state magma lens will only exist within the crust for ridges spreading faster than a 25 mm/yr half rate. The depth dependence of the magma lens with spreading rate is in good agreement with seismic observations. These results suggest that a fairly delicate balance between magmatic heat injection during crustal accretion and hydrothermal heat removal leads to a strongly different crustal thermal structure at fast and slow spreading ridge axes. Our results support the hypothesis that median valley topography is due to extension of strong ridge axis lithosphere; it is the difference in thermal regime that is directly responsible for the striking difference between the typical median valley seen at slow spreading ridges (e.g., Mid-Atlantic Ridge) and the axial high seen at fast spreading ridges (e.g., East Pacific Rise). This paradigm for the origin of a median valley at a slow spreading ridge predicts that along-axis variations in median valley topography of a slow spreading center reflect variations in recent magmatic heat input along a segment, that is, that the axial topography is a good time-averaged indicator of the relative importance of hydrothermal cooling and magmatic injection along a given section of a ridge segment. We determine the accumulated crustal strain associated with lower crustal flow which supports the hypothesis that the Oman Ophiolite crust was created at a paleo-analogue to a fast spreading ridge and also suggests that crustal strain, and not cumulate layering, may be the dominant physical process that generates layered gabbros within the Oman Ophiolite." @default.
- W2002278475 created "2016-06-24" @default.
- W2002278475 creator A5024081868 @default.
- W2002278475 creator A5034051619 @default.
- W2002278475 date "1993-04-10" @default.
- W2002278475 modified "2023-10-18" @default.
- W2002278475 title "The genesis of oceanic crust: Magma injection, hydrothermal circulation, and crustal flow" @default.
- W2002278475 cites W19390419 @default.
- W2002278475 cites W1963553290 @default.
- W2002278475 cites W1967330082 @default.
- W2002278475 cites W1967746142 @default.
- W2002278475 cites W1970768454 @default.
- W2002278475 cites W1973057777 @default.
- W2002278475 cites W1974496222 @default.
- W2002278475 cites W1975477565 @default.
- W2002278475 cites W1983815388 @default.
- W2002278475 cites W1990753486 @default.
- W2002278475 cites W1993648774 @default.
- W2002278475 cites W1997899212 @default.
- W2002278475 cites W2001747122 @default.
- W2002278475 cites W2004758340 @default.
- W2002278475 cites W2005897960 @default.
- W2002278475 cites W2006063745 @default.
- W2002278475 cites W2013299759 @default.
- W2002278475 cites W2013539586 @default.
- W2002278475 cites W2014332508 @default.
- W2002278475 cites W2014557550 @default.
- W2002278475 cites W2022450056 @default.
- W2002278475 cites W2022813251 @default.
- W2002278475 cites W2023476433 @default.
- W2002278475 cites W2027253376 @default.
- W2002278475 cites W2029206267 @default.
- W2002278475 cites W2037666319 @default.
- W2002278475 cites W2037776884 @default.
- W2002278475 cites W2047712588 @default.
- W2002278475 cites W2048225836 @default.
- W2002278475 cites W2048824368 @default.
- W2002278475 cites W2050889054 @default.
- W2002278475 cites W2060601826 @default.
- W2002278475 cites W2062349748 @default.
- W2002278475 cites W2073897969 @default.
- W2002278475 cites W2075845557 @default.
- W2002278475 cites W2079329034 @default.
- W2002278475 cites W2079655620 @default.
- W2002278475 cites W2084092719 @default.
- W2002278475 cites W2087774564 @default.
- W2002278475 cites W2088625233 @default.
- W2002278475 cites W2100727116 @default.
- W2002278475 cites W2107316430 @default.
- W2002278475 cites W2112009358 @default.
- W2002278475 cites W2113753629 @default.
- W2002278475 cites W2115901547 @default.
- W2002278475 cites W2120027408 @default.
- W2002278475 cites W2130532847 @default.
- W2002278475 cites W2142429259 @default.
- W2002278475 cites W2143045284 @default.
- W2002278475 cites W2144232149 @default.
- W2002278475 cites W2153199248 @default.
- W2002278475 cites W2162129176 @default.
- W2002278475 cites W2163031137 @default.
- W2002278475 cites W2165933632 @default.
- W2002278475 cites W2899615912 @default.
- W2002278475 cites W3103104081 @default.
- W2002278475 cites W642264229 @default.
- W2002278475 doi "https://doi.org/10.1029/92jb02650" @default.
- W2002278475 hasPublicationYear "1993" @default.
- W2002278475 type Work @default.
- W2002278475 sameAs 2002278475 @default.
- W2002278475 citedByCount "463" @default.
- W2002278475 countsByYear W20022784752012 @default.
- W2002278475 countsByYear W20022784752013 @default.
- W2002278475 countsByYear W20022784752014 @default.
- W2002278475 countsByYear W20022784752015 @default.
- W2002278475 countsByYear W20022784752016 @default.
- W2002278475 countsByYear W20022784752017 @default.
- W2002278475 countsByYear W20022784752018 @default.
- W2002278475 countsByYear W20022784752019 @default.
- W2002278475 countsByYear W20022784752020 @default.
- W2002278475 countsByYear W20022784752021 @default.
- W2002278475 countsByYear W20022784752022 @default.
- W2002278475 countsByYear W20022784752023 @default.
- W2002278475 crossrefType "journal-article" @default.
- W2002278475 hasAuthorship W2002278475A5024081868 @default.
- W2002278475 hasAuthorship W2002278475A5034051619 @default.
- W2002278475 hasConcept C120806208 @default.
- W2002278475 hasConcept C121332964 @default.
- W2002278475 hasConcept C127313418 @default.
- W2002278475 hasConcept C154200439 @default.
- W2002278475 hasConcept C156622251 @default.
- W2002278475 hasConcept C165205528 @default.
- W2002278475 hasConcept C17409809 @default.
- W2002278475 hasConcept C183222429 @default.
- W2002278475 hasConcept C2776698055 @default.
- W2002278475 hasConcept C38349280 @default.
- W2002278475 hasConcept C57879066 @default.
- W2002278475 hasConcept C58097730 @default.
- W2002278475 hasConcept C5900021 @default.
- W2002278475 hasConcept C77928131 @default.