Matches in SemOpenAlex for { <https://semopenalex.org/work/W2002316265> ?p ?o ?g. }
- W2002316265 endingPage "24277" @default.
- W2002316265 startingPage "24270" @default.
- W2002316265 abstract "Monocytic cells bind fibrinogen (fg) through integrin αMβ2. fg-bound monocytic cells demonstrate an enhanced adhesion to endothelial cells, which is dependent on intercellular adhesion molecule-1 (ICAM-1). Our studies differentiate fg interactions with stimulated and resting endothelial cells, which are ICAM-1 dependent and independent, respectively. This report documents a direct interaction between fg and intact ICAM-1 and with a two-Ig domain form of ICAM-1. A small region within the first Ig domain of ICAM-1, ICAM-1-(8Altieri D.C. Bader R. Mannucci P.M. Edgington T.S. J. Cell Biol. 1988; 107: 1893-1900Crossref PubMed Scopus (297) Google Scholar, 9Altieri D.C. Plescia J. Plow E.F. J. Biol. Chem. 1993; 268: 1847-1853Abstract Full Text PDF PubMed Google Scholar, 10Staunton D.E. Dustin M.L. Springer T.A. Nature. 1989; 339: 61-64Crossref PubMed Scopus (668) Google Scholar, 11de Fougerolles A.R. Qin X. Springer T.A. J. Exp. Med. 1994; 179: 619-629Crossref PubMed Scopus (149) Google Scholar, 12Giranda V.L. Chapman M.S. Rossmann M.G. Proteins Struct. Funct. Genet. 1990; 7: 227-233Crossref PubMed Scopus (38) Google Scholar, 13Alzari P.M. Lascombe M.-B. Poljak R.J. Annu. Rev. Immunol. 1988; 6: 555-580Crossref PubMed Scopus (202) Google Scholar, 14Williams A.F. Barclay A.N. Annu. Rev. Immunol. 1988; 6: 381-405Crossref PubMed Scopus (1743) Google Scholar, 15Marlin S.D. Springer T.A. Cell. 1987; 51: 813-819Abstract Full Text PDF PubMed Scopus (1374) Google Scholar, 16Diamond M.S. Staunton D.E. Marlin S.D. Springer T.A. Cell. 1991; 65: 961-971Abstract Full Text PDF PubMed Scopus (639) Google Scholar, 17Springer T.A. Annu. Rev. Physiol. 1995; 57: 827-872Crossref PubMed Scopus (1352) Google Scholar, 18Xu H. Gonzalo J.A. Pierre St., Y. Williams I.R. Kupper T.S. Cotran R.S. Springer T.A. Gutierrez-Ramos J.-C. J. Exp. Med. 1994; 180: 95-109Crossref PubMed Scopus (434) Google Scholar, 19Languino L.R. Duperray A. Joganic K.J. Fornaro M. Thornton G.B. Altieri D.C. Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 1505-1509Crossref PubMed Scopus (163) Google Scholar, 20Faull R.J. Russ G.R. Transplantation. 1989; 48: 226-230Crossref PubMed Scopus (143) Google Scholar, 21Fecondo J.V. Kent S.B.H. Boyd A.W. Proc. Natl. Acad. Sci. U. S. A. 1991; 88: 2879-2882Crossref PubMed Scopus (31) Google Scholar) (KVILPRGGSVLVTC), was identified to interact with fg in a specific and selective manner. ICAM-1-(8Altieri D.C. Bader R. Mannucci P.M. Edgington T.S. J. Cell Biol. 1988; 107: 1893-1900Crossref PubMed Scopus (297) Google Scholar, 9Altieri D.C. Plescia J. Plow E.F. J. Biol. Chem. 1993; 268: 1847-1853Abstract Full Text PDF PubMed Google Scholar, 10Staunton D.E. Dustin M.L. Springer T.A. Nature. 1989; 339: 61-64Crossref PubMed Scopus (668) Google Scholar, 11de Fougerolles A.R. Qin X. Springer T.A. J. Exp. Med. 1994; 179: 619-629Crossref PubMed Scopus (149) Google Scholar, 12Giranda V.L. Chapman M.S. Rossmann M.G. Proteins Struct. Funct. Genet. 1990; 7: 227-233Crossref PubMed Scopus (38) Google Scholar, 13Alzari P.M. Lascombe M.-B. Poljak R.J. Annu. Rev. Immunol. 1988; 6: 555-580Crossref PubMed Scopus (202) Google Scholar, 14Williams A.F. Barclay A.N. Annu. Rev. Immunol. 1988; 6: 381-405Crossref PubMed Scopus (1743) Google Scholar, 15Marlin S.D. Springer T.A. Cell. 1987; 51: 813-819Abstract Full Text PDF PubMed Scopus (1374) Google Scholar, 16Diamond M.S. Staunton D.E. Marlin S.D. Springer T.A. Cell. 1991; 65: 961-971Abstract Full Text PDF PubMed Scopus (639) Google Scholar, 17Springer T.A. Annu. Rev. Physiol. 1995; 57: 827-872Crossref PubMed Scopus (1352) Google Scholar, 18Xu H. Gonzalo J.A. Pierre St., Y. Williams I.R. Kupper T.S. Cotran R.S. Springer T.A. Gutierrez-Ramos J.-C. J. Exp. Med. 1994; 180: 95-109Crossref PubMed Scopus (434) Google Scholar, 19Languino L.R. Duperray A. Joganic K.J. Fornaro M. Thornton G.B. Altieri D.C. Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 1505-1509Crossref PubMed Scopus (163) Google Scholar, 20Faull R.J. Russ G.R. Transplantation. 1989; 48: 226-230Crossref PubMed Scopus (143) Google Scholar, 21Fecondo J.V. Kent S.B.H. Boyd A.W. Proc. Natl. Acad. Sci. U. S. A. 1991; 88: 2879-2882Crossref PubMed Scopus (31) Google Scholar) bound to plasmin-derived fg fragments X, D100, and D80 but not to fragment E. Consistent with this finding, fg γ-chain peptide, fg-γ-117-133, blocked fg interaction with ICAM-1-(8Altieri D.C. Bader R. Mannucci P.M. Edgington T.S. J. Cell Biol. 1988; 107: 1893-1900Crossref PubMed Scopus (297) Google Scholar, 9Altieri D.C. Plescia J. Plow E.F. J. Biol. Chem. 1993; 268: 1847-1853Abstract Full Text PDF PubMed Google Scholar, 10Staunton D.E. Dustin M.L. Springer T.A. Nature. 1989; 339: 61-64Crossref PubMed Scopus (668) Google Scholar, 11de Fougerolles A.R. Qin X. Springer T.A. J. Exp. Med. 1994; 179: 619-629Crossref PubMed Scopus (149) Google Scholar, 12Giranda V.L. Chapman M.S. Rossmann M.G. Proteins Struct. Funct. Genet. 1990; 7: 227-233Crossref PubMed Scopus (38) Google Scholar, 13Alzari P.M. Lascombe M.-B. Poljak R.J. Annu. Rev. Immunol. 1988; 6: 555-580Crossref PubMed Scopus (202) Google Scholar, 14Williams A.F. Barclay A.N. Annu. Rev. Immunol. 1988; 6: 381-405Crossref PubMed Scopus (1743) Google Scholar, 15Marlin S.D. Springer T.A. Cell. 1987; 51: 813-819Abstract Full Text PDF PubMed Scopus (1374) Google Scholar, 16Diamond M.S. Staunton D.E. Marlin S.D. Springer T.A. Cell. 1991; 65: 961-971Abstract Full Text PDF PubMed Scopus (639) Google Scholar, 17Springer T.A. Annu. Rev. Physiol. 1995; 57: 827-872Crossref PubMed Scopus (1352) Google Scholar, 18Xu H. Gonzalo J.A. Pierre St., Y. Williams I.R. Kupper T.S. Cotran R.S. Springer T.A. Gutierrez-Ramos J.-C. J. Exp. Med. 1994; 180: 95-109Crossref PubMed Scopus (434) Google Scholar, 19Languino L.R. Duperray A. Joganic K.J. Fornaro M. Thornton G.B. Altieri D.C. Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 1505-1509Crossref PubMed Scopus (163) Google Scholar, 20Faull R.J. Russ G.R. Transplantation. 1989; 48: 226-230Crossref PubMed Scopus (143) Google Scholar, 21Fecondo J.V. Kent S.B.H. Boyd A.W. Proc. Natl. Acad. Sci. U. S. A. 1991; 88: 2879-2882Crossref PubMed Scopus (31) Google Scholar). ICAM-1-(8Altieri D.C. Bader R. Mannucci P.M. Edgington T.S. J. Cell Biol. 1988; 107: 1893-1900Crossref PubMed Scopus (297) Google Scholar, 9Altieri D.C. Plescia J. Plow E.F. J. Biol. Chem. 1993; 268: 1847-1853Abstract Full Text PDF PubMed Google Scholar, 10Staunton D.E. Dustin M.L. Springer T.A. Nature. 1989; 339: 61-64Crossref PubMed Scopus (668) Google Scholar, 11de Fougerolles A.R. Qin X. Springer T.A. J. Exp. Med. 1994; 179: 619-629Crossref PubMed Scopus (149) Google Scholar, 12Giranda V.L. Chapman M.S. Rossmann M.G. Proteins Struct. Funct. Genet. 1990; 7: 227-233Crossref PubMed Scopus (38) Google Scholar, 13Alzari P.M. Lascombe M.-B. Poljak R.J. Annu. Rev. Immunol. 1988; 6: 555-580Crossref PubMed Scopus (202) Google Scholar, 14Williams A.F. Barclay A.N. Annu. Rev. Immunol. 1988; 6: 381-405Crossref PubMed Scopus (1743) Google Scholar, 15Marlin S.D. Springer T.A. Cell. 1987; 51: 813-819Abstract Full Text PDF PubMed Scopus (1374) Google Scholar, 16Diamond M.S. Staunton D.E. Marlin S.D. Springer T.A. Cell. 1991; 65: 961-971Abstract Full Text PDF PubMed Scopus (639) Google Scholar, 17Springer T.A. Annu. Rev. Physiol. 1995; 57: 827-872Crossref PubMed Scopus (1352) Google Scholar, 18Xu H. Gonzalo J.A. Pierre St., Y. Williams I.R. Kupper T.S. Cotran R.S. Springer T.A. Gutierrez-Ramos J.-C. J. Exp. Med. 1994; 180: 95-109Crossref PubMed Scopus (434) Google Scholar, 19Languino L.R. Duperray A. Joganic K.J. Fornaro M. Thornton G.B. Altieri D.C. Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 1505-1509Crossref PubMed Scopus (163) Google Scholar, 20Faull R.J. Russ G.R. Transplantation. 1989; 48: 226-230Crossref PubMed Scopus (143) Google Scholar, 21Fecondo J.V. Kent S.B.H. Boyd A.W. Proc. Natl. Acad. Sci. U. S. A. 1991; 88: 2879-2882Crossref PubMed Scopus (31) Google Scholar) peptide and antibodies directed against ICAM-1-(8Altieri D.C. Bader R. Mannucci P.M. Edgington T.S. J. Cell Biol. 1988; 107: 1893-1900Crossref PubMed Scopus (297) Google Scholar, 9Altieri D.C. Plescia J. Plow E.F. J. Biol. Chem. 1993; 268: 1847-1853Abstract Full Text PDF PubMed Google Scholar, 10Staunton D.E. Dustin M.L. Springer T.A. Nature. 1989; 339: 61-64Crossref PubMed Scopus (668) Google Scholar, 11de Fougerolles A.R. Qin X. Springer T.A. J. Exp. Med. 1994; 179: 619-629Crossref PubMed Scopus (149) Google Scholar, 12Giranda V.L. Chapman M.S. Rossmann M.G. Proteins Struct. Funct. Genet. 1990; 7: 227-233Crossref PubMed Scopus (38) Google Scholar, 13Alzari P.M. Lascombe M.-B. Poljak R.J. Annu. Rev. Immunol. 1988; 6: 555-580Crossref PubMed Scopus (202) Google Scholar, 14Williams A.F. Barclay A.N. Annu. Rev. Immunol. 1988; 6: 381-405Crossref PubMed Scopus (1743) Google Scholar, 15Marlin S.D. Springer T.A. Cell. 1987; 51: 813-819Abstract Full Text PDF PubMed Scopus (1374) Google Scholar, 16Diamond M.S. Staunton D.E. Marlin S.D. Springer T.A. Cell. 1991; 65: 961-971Abstract Full Text PDF PubMed Scopus (639) Google Scholar, 17Springer T.A. Annu. Rev. Physiol. 1995; 57: 827-872Crossref PubMed Scopus (1352) Google Scholar, 18Xu H. Gonzalo J.A. Pierre St., Y. Williams I.R. Kupper T.S. Cotran R.S. Springer T.A. Gutierrez-Ramos J.-C. J. Exp. Med. 1994; 180: 95-109Crossref PubMed Scopus (434) Google Scholar, 19Languino L.R. Duperray A. Joganic K.J. Fornaro M. Thornton G.B. Altieri D.C. Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 1505-1509Crossref PubMed Scopus (163) Google Scholar, 20Faull R.J. Russ G.R. Transplantation. 1989; 48: 226-230Crossref PubMed Scopus (143) Google Scholar, 21Fecondo J.V. Kent S.B.H. Boyd A.W. Proc. Natl. Acad. Sci. U. S. A. 1991; 88: 2879-2882Crossref PubMed Scopus (31) Google Scholar) also blocked the adhesion and binding of ICAM-1-bearing Raji cells with fg. ICAM-1-(8Altieri D.C. Bader R. Mannucci P.M. Edgington T.S. J. Cell Biol. 1988; 107: 1893-1900Crossref PubMed Scopus (297) Google Scholar, 9Altieri D.C. Plescia J. Plow E.F. J. Biol. Chem. 1993; 268: 1847-1853Abstract Full Text PDF PubMed Google Scholar, 10Staunton D.E. Dustin M.L. Springer T.A. Nature. 1989; 339: 61-64Crossref PubMed Scopus (668) Google Scholar, 11de Fougerolles A.R. Qin X. Springer T.A. J. Exp. Med. 1994; 179: 619-629Crossref PubMed Scopus (149) Google Scholar, 12Giranda V.L. Chapman M.S. Rossmann M.G. Proteins Struct. Funct. Genet. 1990; 7: 227-233Crossref PubMed Scopus (38) Google Scholar, 13Alzari P.M. Lascombe M.-B. Poljak R.J. Annu. Rev. Immunol. 1988; 6: 555-580Crossref PubMed Scopus (202) Google Scholar, 14Williams A.F. Barclay A.N. Annu. Rev. Immunol. 1988; 6: 381-405Crossref PubMed Scopus (1743) Google Scholar, 15Marlin S.D. Springer T.A. Cell. 1987; 51: 813-819Abstract Full Text PDF PubMed Scopus (1374) Google Scholar, 16Diamond M.S. Staunton D.E. Marlin S.D. Springer T.A. Cell. 1991; 65: 961-971Abstract Full Text PDF PubMed Scopus (639) Google Scholar, 17Springer T.A. Annu. Rev. Physiol. 1995; 57: 827-872Crossref PubMed Scopus (1352) Google Scholar, 18Xu H. Gonzalo J.A. Pierre St., Y. Williams I.R. Kupper T.S. Cotran R.S. Springer T.A. Gutierrez-Ramos J.-C. J. Exp. Med. 1994; 180: 95-109Crossref PubMed Scopus (434) Google Scholar, 19Languino L.R. Duperray A. Joganic K.J. Fornaro M. Thornton G.B. Altieri D.C. Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 1505-1509Crossref PubMed Scopus (163) Google Scholar, 20Faull R.J. Russ G.R. Transplantation. 1989; 48: 226-230Crossref PubMed Scopus (143) Google Scholar, 21Fecondo J.V. Kent S.B.H. Boyd A.W. Proc. Natl. Acad. Sci. U. S. A. 1991; 88: 2879-2882Crossref PubMed Scopus (31) Google Scholar) and fg-γ-117-133 are likely to be one of the contact pairs mediating fg-ICAM-1 interactions. Monocytic cells bind fibrinogen (fg) through integrin αMβ2. fg-bound monocytic cells demonstrate an enhanced adhesion to endothelial cells, which is dependent on intercellular adhesion molecule-1 (ICAM-1). Our studies differentiate fg interactions with stimulated and resting endothelial cells, which are ICAM-1 dependent and independent, respectively. This report documents a direct interaction between fg and intact ICAM-1 and with a two-Ig domain form of ICAM-1. A small region within the first Ig domain of ICAM-1, ICAM-1-(8Altieri D.C. Bader R. Mannucci P.M. Edgington T.S. J. Cell Biol. 1988; 107: 1893-1900Crossref PubMed Scopus (297) Google Scholar, 9Altieri D.C. Plescia J. Plow E.F. J. Biol. Chem. 1993; 268: 1847-1853Abstract Full Text PDF PubMed Google Scholar, 10Staunton D.E. Dustin M.L. Springer T.A. Nature. 1989; 339: 61-64Crossref PubMed Scopus (668) Google Scholar, 11de Fougerolles A.R. Qin X. Springer T.A. J. Exp. Med. 1994; 179: 619-629Crossref PubMed Scopus (149) Google Scholar, 12Giranda V.L. Chapman M.S. Rossmann M.G. Proteins Struct. Funct. Genet. 1990; 7: 227-233Crossref PubMed Scopus (38) Google Scholar, 13Alzari P.M. Lascombe M.-B. Poljak R.J. Annu. Rev. Immunol. 1988; 6: 555-580Crossref PubMed Scopus (202) Google Scholar, 14Williams A.F. Barclay A.N. Annu. Rev. Immunol. 1988; 6: 381-405Crossref PubMed Scopus (1743) Google Scholar, 15Marlin S.D. Springer T.A. Cell. 1987; 51: 813-819Abstract Full Text PDF PubMed Scopus (1374) Google Scholar, 16Diamond M.S. Staunton D.E. Marlin S.D. Springer T.A. Cell. 1991; 65: 961-971Abstract Full Text PDF PubMed Scopus (639) Google Scholar, 17Springer T.A. Annu. Rev. Physiol. 1995; 57: 827-872Crossref PubMed Scopus (1352) Google Scholar, 18Xu H. Gonzalo J.A. Pierre St., Y. Williams I.R. Kupper T.S. Cotran R.S. Springer T.A. Gutierrez-Ramos J.-C. J. Exp. Med. 1994; 180: 95-109Crossref PubMed Scopus (434) Google Scholar, 19Languino L.R. Duperray A. Joganic K.J. Fornaro M. Thornton G.B. Altieri D.C. Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 1505-1509Crossref PubMed Scopus (163) Google Scholar, 20Faull R.J. Russ G.R. Transplantation. 1989; 48: 226-230Crossref PubMed Scopus (143) Google Scholar, 21Fecondo J.V. Kent S.B.H. Boyd A.W. Proc. Natl. Acad. Sci. U. S. A. 1991; 88: 2879-2882Crossref PubMed Scopus (31) Google Scholar) (KVILPRGGSVLVTC), was identified to interact with fg in a specific and selective manner. ICAM-1-(8Altieri D.C. Bader R. Mannucci P.M. Edgington T.S. J. Cell Biol. 1988; 107: 1893-1900Crossref PubMed Scopus (297) Google Scholar, 9Altieri D.C. Plescia J. Plow E.F. J. Biol. Chem. 1993; 268: 1847-1853Abstract Full Text PDF PubMed Google Scholar, 10Staunton D.E. Dustin M.L. Springer T.A. Nature. 1989; 339: 61-64Crossref PubMed Scopus (668) Google Scholar, 11de Fougerolles A.R. Qin X. Springer T.A. J. Exp. Med. 1994; 179: 619-629Crossref PubMed Scopus (149) Google Scholar, 12Giranda V.L. Chapman M.S. Rossmann M.G. Proteins Struct. Funct. Genet. 1990; 7: 227-233Crossref PubMed Scopus (38) Google Scholar, 13Alzari P.M. Lascombe M.-B. Poljak R.J. Annu. Rev. Immunol. 1988; 6: 555-580Crossref PubMed Scopus (202) Google Scholar, 14Williams A.F. Barclay A.N. Annu. Rev. Immunol. 1988; 6: 381-405Crossref PubMed Scopus (1743) Google Scholar, 15Marlin S.D. Springer T.A. Cell. 1987; 51: 813-819Abstract Full Text PDF PubMed Scopus (1374) Google Scholar, 16Diamond M.S. Staunton D.E. Marlin S.D. Springer T.A. Cell. 1991; 65: 961-971Abstract Full Text PDF PubMed Scopus (639) Google Scholar, 17Springer T.A. Annu. Rev. Physiol. 1995; 57: 827-872Crossref PubMed Scopus (1352) Google Scholar, 18Xu H. Gonzalo J.A. Pierre St., Y. Williams I.R. Kupper T.S. Cotran R.S. Springer T.A. Gutierrez-Ramos J.-C. J. Exp. Med. 1994; 180: 95-109Crossref PubMed Scopus (434) Google Scholar, 19Languino L.R. Duperray A. Joganic K.J. Fornaro M. Thornton G.B. Altieri D.C. Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 1505-1509Crossref PubMed Scopus (163) Google Scholar, 20Faull R.J. Russ G.R. Transplantation. 1989; 48: 226-230Crossref PubMed Scopus (143) Google Scholar, 21Fecondo J.V. Kent S.B.H. Boyd A.W. Proc. Natl. Acad. Sci. U. S. A. 1991; 88: 2879-2882Crossref PubMed Scopus (31) Google Scholar) bound to plasmin-derived fg fragments X, D100, and D80 but not to fragment E. Consistent with this finding, fg γ-chain peptide, fg-γ-117-133, blocked fg interaction with ICAM-1-(8Altieri D.C. Bader R. Mannucci P.M. Edgington T.S. J. Cell Biol. 1988; 107: 1893-1900Crossref PubMed Scopus (297) Google Scholar, 9Altieri D.C. Plescia J. Plow E.F. J. Biol. Chem. 1993; 268: 1847-1853Abstract Full Text PDF PubMed Google Scholar, 10Staunton D.E. Dustin M.L. Springer T.A. Nature. 1989; 339: 61-64Crossref PubMed Scopus (668) Google Scholar, 11de Fougerolles A.R. Qin X. Springer T.A. J. Exp. Med. 1994; 179: 619-629Crossref PubMed Scopus (149) Google Scholar, 12Giranda V.L. Chapman M.S. Rossmann M.G. Proteins Struct. Funct. Genet. 1990; 7: 227-233Crossref PubMed Scopus (38) Google Scholar, 13Alzari P.M. Lascombe M.-B. Poljak R.J. Annu. Rev. Immunol. 1988; 6: 555-580Crossref PubMed Scopus (202) Google Scholar, 14Williams A.F. Barclay A.N. Annu. Rev. Immunol. 1988; 6: 381-405Crossref PubMed Scopus (1743) Google Scholar, 15Marlin S.D. Springer T.A. Cell. 1987; 51: 813-819Abstract Full Text PDF PubMed Scopus (1374) Google Scholar, 16Diamond M.S. Staunton D.E. Marlin S.D. Springer T.A. Cell. 1991; 65: 961-971Abstract Full Text PDF PubMed Scopus (639) Google Scholar, 17Springer T.A. Annu. Rev. Physiol. 1995; 57: 827-872Crossref PubMed Scopus (1352) Google Scholar, 18Xu H. Gonzalo J.A. Pierre St., Y. Williams I.R. Kupper T.S. Cotran R.S. Springer T.A. Gutierrez-Ramos J.-C. J. Exp. Med. 1994; 180: 95-109Crossref PubMed Scopus (434) Google Scholar, 19Languino L.R. Duperray A. Joganic K.J. Fornaro M. Thornton G.B. Altieri D.C. Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 1505-1509Crossref PubMed Scopus (163) Google Scholar, 20Faull R.J. Russ G.R. Transplantation. 1989; 48: 226-230Crossref PubMed Scopus (143) Google Scholar, 21Fecondo J.V. Kent S.B.H. Boyd A.W. Proc. Natl. Acad. Sci. U. S. A. 1991; 88: 2879-2882Crossref PubMed Scopus (31) Google Scholar). ICAM-1-(8Altieri D.C. Bader R. Mannucci P.M. Edgington T.S. J. Cell Biol. 1988; 107: 1893-1900Crossref PubMed Scopus (297) Google Scholar, 9Altieri D.C. Plescia J. Plow E.F. J. Biol. Chem. 1993; 268: 1847-1853Abstract Full Text PDF PubMed Google Scholar, 10Staunton D.E. Dustin M.L. Springer T.A. Nature. 1989; 339: 61-64Crossref PubMed Scopus (668) Google Scholar, 11de Fougerolles A.R. Qin X. Springer T.A. J. Exp. Med. 1994; 179: 619-629Crossref PubMed Scopus (149) Google Scholar, 12Giranda V.L. Chapman M.S. Rossmann M.G. Proteins Struct. Funct. Genet. 1990; 7: 227-233Crossref PubMed Scopus (38) Google Scholar, 13Alzari P.M. Lascombe M.-B. Poljak R.J. Annu. Rev. Immunol. 1988; 6: 555-580Crossref PubMed Scopus (202) Google Scholar, 14Williams A.F. Barclay A.N. Annu. Rev. Immunol. 1988; 6: 381-405Crossref PubMed Scopus (1743) Google Scholar, 15Marlin S.D. Springer T.A. Cell. 1987; 51: 813-819Abstract Full Text PDF PubMed Scopus (1374) Google Scholar, 16Diamond M.S. Staunton D.E. Marlin S.D. Springer T.A. Cell. 1991; 65: 961-971Abstract Full Text PDF PubMed Scopus (639) Google Scholar, 17Springer T.A. Annu. Rev. Physiol. 1995; 57: 827-872Crossref PubMed Scopus (1352) Google Scholar, 18Xu H. Gonzalo J.A. Pierre St., Y. Williams I.R. Kupper T.S. Cotran R.S. Springer T.A. Gutierrez-Ramos J.-C. J. Exp. Med. 1994; 180: 95-109Crossref PubMed Scopus (434) Google Scholar, 19Languino L.R. Duperray A. Joganic K.J. Fornaro M. Thornton G.B. Altieri D.C. Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 1505-1509Crossref PubMed Scopus (163) Google Scholar, 20Faull R.J. Russ G.R. Transplantation. 1989; 48: 226-230Crossref PubMed Scopus (143) Google Scholar, 21Fecondo J.V. Kent S.B.H. Boyd A.W. Proc. Natl. Acad. Sci. U. S. A. 1991; 88: 2879-2882Crossref PubMed Scopus (31) Google Scholar) peptide and antibodies directed against ICAM-1-(8Altieri D.C. Bader R. Mannucci P.M. Edgington T.S. J. Cell Biol. 1988; 107: 1893-1900Crossref PubMed Scopus (297) Google Scholar, 9Altieri D.C. Plescia J. Plow E.F. J. Biol. Chem. 1993; 268: 1847-1853Abstract Full Text PDF PubMed Google Scholar, 10Staunton D.E. Dustin M.L. Springer T.A. Nature. 1989; 339: 61-64Crossref PubMed Scopus (668) Google Scholar, 11de Fougerolles A.R. Qin X. Springer T.A. J. Exp. Med. 1994; 179: 619-629Crossref PubMed Scopus (149) Google Scholar, 12Giranda V.L. Chapman M.S. Rossmann M.G. Proteins Struct. Funct. Genet. 1990; 7: 227-233Crossref PubMed Scopus (38) Google Scholar, 13Alzari P.M. Lascombe M.-B. Poljak R.J. Annu. Rev. Immunol. 1988; 6: 555-580Crossref PubMed Scopus (202) Google Scholar, 14Williams A.F. Barclay A.N. Annu. Rev. Immunol. 1988; 6: 381-405Crossref PubMed Scopus (1743) Google Scholar, 15Marlin S.D. Springer T.A. Cell. 1987; 51: 813-819Abstract Full Text PDF PubMed Scopus (1374) Google Scholar, 16Diamond M.S. Staunton D.E. Marlin S.D. Springer T.A. Cell. 1991; 65: 961-971Abstract Full Text PDF PubMed Scopus (639) Google Scholar, 17Springer T.A. Annu. Rev. Physiol. 1995; 57: 827-872Crossref PubMed Scopus (1352) Google Scholar, 18Xu H. Gonzalo J.A. Pierre St., Y. Williams I.R. Kupper T.S. Cotran R.S. Springer T.A. Gutierrez-Ramos J.-C. J. Exp. Med. 1994; 180: 95-109Crossref PubMed Scopus (434) Google Scholar, 19Languino L.R. Duperray A. Joganic K.J. Fornaro M. Thornton G.B. Altieri D.C. Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 1505-1509Crossref PubMed Scopus (163) Google Scholar, 20Faull R.J. Russ G.R. Transplantation. 1989; 48: 226-230Crossref PubMed Scopus (143) Google Scholar, 21Fecondo J.V. Kent S.B.H. Boyd A.W. Proc. Natl. Acad. Sci. U. S. A. 1991; 88: 2879-2882Crossref PubMed Scopus (31) Google Scholar) also blocked the adhesion and binding of ICAM-1-bearing Raji cells with fg. ICAM-1-(8Altieri D.C. Bader R. Mannucci P.M. Edgington T.S. J. Cell Biol. 1988; 107: 1893-1900Crossref PubMed Scopus (297) Google Scholar, 9Altieri D.C. Plescia J. Plow E.F. J. Biol. Chem. 1993; 268: 1847-1853Abstract Full Text PDF PubMed Google Scholar, 10Staunton D.E. Dustin M.L. Springer T.A. Nature. 1989; 339: 61-64Crossref PubMed Scopus (668) Google Scholar, 11de Fougerolles A.R. Qin X. Springer T.A. J. Exp. Med. 1994; 179: 619-629Crossref PubMed Scopus (149) Google Scholar, 12Giranda V.L. Chapman M.S. Rossmann M.G. Proteins Struct. Funct. Genet. 1990; 7: 227-233Crossref PubMed Scopus (38) Google Scholar, 13Alzari P.M. Lascombe M.-B. Poljak R.J. Annu. Rev. Immunol. 1988; 6: 555-580Crossref PubMed Scopus (202) Google Scholar, 14Williams A.F. Barclay A.N. Annu. Rev. Immunol. 1988; 6: 381-405Crossref PubMed Scopus (1743) Google Scholar, 15Marlin S.D. Springer T.A. Cell. 1987; 51: 813-819Abstract Full Text PDF PubMed Scopus (1374) Google Scholar, 16Diamond M.S. Staunton D.E. Marlin S.D. Springer T.A. Cell. 1991; 65: 961-971Abstract Full Text PDF PubMed Scopus (639) Google Scholar, 17Springer T.A. Annu. Rev. Physiol. 1995; 57: 827-872Crossref PubMed Scopus (1352) Google Scholar, 18Xu H. Gonzalo J.A. Pierre St., Y. Williams I.R. Kupper T.S. Cotran R.S. Springer T.A. Gutierrez-Ramos J.-C. J. Exp. Med. 1994; 180: 95-109Crossref PubMed Scopus (434) Google Scholar, 19Languino L.R. Duperray A. Joganic K.J. Fornaro M. Thornton G.B. Altieri D.C. Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 1505-1509Crossref PubMed Scopus (163) Google Scholar, 20Faull R.J. Russ G.R. Transplantation. 1989; 48: 226-230Crossref PubMed Scopus (143) Google Scholar, 21Fecondo J.V. Kent S.B.H. Boyd A.W. Proc. Natl. Acad. Sci. U. S. A. 1991; 88: 2879-2882Crossref PubMed Scopus (31) Google Scholar) and fg-γ-117-133 are likely to be one of the contact pairs mediating fg-ICAM-1 interactions. While fibrinogen (fg) 1The abbreviations used are: fgfibrinogenICAM-1intercellular cell adhesion molecule 1ECendothelial cellsIgimmunoglobulinTNF-αtumor necrosis factor-αHBSSHanks' balanced salt solutionmAbmonoclonal antibodyHPLChigh pressure liquid chromatographyTBSTris-buffered salineBSAbovine serum albuminCAPS3-(cyclohexylamino)propanesulfonic acidFACSfluorescent-activated cell sortingVCAM-1vascular cell adhesion molecule-1. is a plasma protein and intracellular adhesion molecule 1 (ICAM-1) is primarily a cell surface protein, both play central roles in cell-cell interactions (1Languino L.R. Plescia J. Duperray A. Brian A.A. Plow E.F. Geltosky J.E. Altieri D.C. Cell. 1993; 73: 1423-1434Abstract Full Text PDF PubMed Scopus (287) Google Scholar, 2Springer T.A. Nature. 1990; 346: 425-434Crossref PubMed Scopus (5725) Google Scholar). fg, a dimeric 340-kDa molecule, circulates in blood at 2-3 mg/ml. It is composed of three pairs of nonidentical polypeptide chains, organized into a central E and two peripheral D domains (3Doolittle R.F. Annu. Rev. Biochem. 1984; 53: 195-229Crossref PubMed Scopus (515) Google Scholar). A cell-cell interaction that is critically dependent on fg is platelet aggregation (4Ginsberg M.H. Loftus J.C. Plow E.F. Thromb. Haemostasis. 1988; 59: 1-6Crossref PubMed Scopus (222) Google Scholar), which involves the binding of fg to platelet integrin, αIIbβ3 (5Peerschke E.I. Semin. Hematol. 1985; 22: 241-259PubMed Google Scholar). The extreme COOH-terminal aspect of the γ chain, γ-406-411, is involved in the recognition of fg by αIIbβ3 (6Kloczewiak M. Timmons S. Hawiger J. Thromb. Res. 1983; 29: 249-255Abstract Full Text PDF PubMed Scopus (79) Google Scholar). fg also interacts with other integrins, including αvβ3 and αMβ2 (7Smith J.W. Ruggeri Z.M. Kunicki T.J. Cheresh D.A. J. Biol. Chem. 1990; 265: 12267-12271Abstract Full Text PDF PubMed Google Scholar, 8Altieri D.C. Bader R. Mannucci P.M. Edgington T.S. J. Cell Biol. 1988; 107: 1893-1900Crossref PubMed Scopus (297) Google Scholar). αvβ3 is expressed on many cell types, including endothelial cells (EC). fg recognition by this receptor is inhibited by Arg-Gly-Asp (RGD)-containing peptides, and fg has two RGD sequences within its Aα chain (3Doolittle R.F. Annu. Rev. Biochem. 1984; 53: 195-229Crossref PubMed Scopus (515) Google Scholar). Evidence is emerging to indicate that the interaction of fg with αMβ2 (Mac-1) may also be important for cell-cell interactions. fg bound to αMβ2 on leukocytes can facilitate the bridging of these cells to EC (1Languino L.R. Plescia J. Duperray A. Brian A.A. Plow E.F. Geltosky J.E. Altieri D.C. Cell. 1993; 73: 1423-1434Abstract Full Text PDF PubMed Scopus (287) Google Scholar), thereby potentially contributing to inflammatory response. Recognition of fg by αMβ2 involves a γ-chain sequence within the D domain, γ-191-202 (9Altieri D.C. Plescia J. Plow E.F. J. Biol. Chem. 1993; 268: 1847-1853Abstract Full Text PDF PubMed Google Scholar). fibrinogen intercellular cell adhesion molecule 1 endothelial cells immunoglobulin tumor necrosis factor-α Hanks' balanced salt solution monoclonal antibody high pressure liquid chromatography Tris-buffered saline bovine serum albumin 3-(cyclohexylamino)propanesulfonic acid fluorescent-activated cell sorting vascular cell adhesion molecule-1. ICAM-1 is a member of the immunoglobulin (Ig)-like superfamily which includes several other adhesion molecules such as VCAM-1, ICAM-2, and ICAM-3. ICAM-1 (95 kDa) contains five Ig-like motifs of 80-90-amino acids which are held together by disulfide bonds (2Springer T.A. Nature. 1990; 346: 425-434Crossref PubMed Scopus (5725) Google Scholar, 10Staunton D.E. Dustin M.L. Springer T.A. Nature. 1989; 339: 61-64Crossref PubMed Scopus (668) Google Scholar, 11de Fougerolles A.R. Qin X. Springer T.A. J. Exp. Med. 1994; 179: 619-629Crossref PubMed Scopus (149) Google Scholar). Each Ig-like motif consists of seven antiparallel strands folded to form two beta sheets (12Giranda V.L. Chapman M.S. Rossmann M.G. Proteins Struct. Funct. Genet. 1990; 7: 227-233Crossref PubMed Scopus (38) Google Scholar, 13Alzari P.M. Lascombe M.-B. Poljak R.J. Annu. Rev. Immunol. 1988; 6: 555-580Crossref PubMed Scopus (202) Google Scholar, 14Williams A.F. Barclay A.N. Annu. Rev. Immunol. 1988; 6: 381-405Crossref PubMed Scopus (1743) Google Scholar). ICAM-1 is present on many cell types including EC, epithelial cells, lymphocytes and macrophages (2Springer T.A. Nature. 1990; 346: 425-434Crossref PubMed Scopus (5725) Google Scholar). On EC, ICAM-1 becomes expressed on stimulation with cytokines, tumor necrosis factor-α (TNF-α) and interleukin-1, and the bacterial product, lipopolysaccharide. ICAM-1 is a ligand for leukocyte integrins αLβ2 (LFA-1) and αMβ2 (15Marlin S.D. Springer T.A. Cell. 1987; 51: 813-819Abstract Full Text PDF PubMed Scopus (1374) Google Scholar, 16Diamond M.S. Staunton D.E. Marlin S.D. Springer T.A. Cell. 1991; 65: 961-971Abstract Full Text PDF PubMed Scopus (639) Google Scholar). Recognition by αLβ2 involves the first two Ig-like domains of ICAM-1, whereas αMβ2 binds to the third Ig-like repeat (17Springer T.A. Annu. Rev. Physiol. 1995; 57: 827-872Crossref PubMed Scopus (1352) Google Scholar). These interactions with ICAM-1 facilitate leukocyte adhesion and transmigration of these cells through the endothelium (18Xu H. Gonzalo J.A. Pierre St., Y. Williams I.R. Kupper T.S. Cotran R.S. Springer T.A. Gutierrez-Ramos J.-C. J. Exp. Med. 1994; 180: 95-109Crossref PubMed Scopus (434) Google Scholar). Recently, a direct interaction between fg and ICAM-1 has been demonstrated (1Languino L.R. Plescia J. Duperray A. Brian A.A. Plow E.F. Geltosky J.E. Altieri D.C. Cell. 1993; 73: 1423-1434Abstract Full Text PDF PubMed Scopus (287) Google Scholar). A mechanism can be envisioned in which fg bound to αMβ2 on leukocytes bridges to ICAM-1 on EC, thus mediating adhesion between the two cell types. This interaction has been implicated in leukocyte transmigration through endothelium (19Languino L.R. Duperray A. Joganic K.J. Fornaro M. Thornton G.B. Altieri D.C. Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 1505-1509Crossref PubMed Scopus (163) Google Scholar). As fg-ICAM-1 interactions may have important pathophysiological ramifications, we have sought to define the molecular basis for their recognition. In this study, we describe the identification of a small sequence within ICAM-1 that is critical for its interaction with fg, specifically with γ-117-133 of fg. Furth" @default.
- W2002316265 created "2016-06-24" @default.
- W2002316265 creator A5021096170 @default.
- W2002316265 creator A5054907774 @default.
- W2002316265 creator A5064784884 @default.
- W2002316265 creator A5072400072 @default.
- W2002316265 creator A5090012143 @default.
- W2002316265 date "1996-09-01" @default.
- W2002316265 modified "2023-09-27" @default.
- W2002316265 title "Identification of an Active Sequence within the First Immunoglobulin Domain of Intercellular Cell Adhesion Molecule-1 (ICAM-1) That Interacts with Fibrinogen" @default.
- W2002316265 cites W1234014522 @default.
- W2002316265 cites W1498548275 @default.
- W2002316265 cites W1508347544 @default.
- W2002316265 cites W1516459493 @default.
- W2002316265 cites W1516954810 @default.
- W2002316265 cites W1520666812 @default.
- W2002316265 cites W1523384705 @default.
- W2002316265 cites W1545341742 @default.
- W2002316265 cites W1546487882 @default.
- W2002316265 cites W1563119717 @default.
- W2002316265 cites W1577087991 @default.
- W2002316265 cites W1577778242 @default.
- W2002316265 cites W1603166580 @default.
- W2002316265 cites W1650068461 @default.
- W2002316265 cites W1966286149 @default.
- W2002316265 cites W1971949231 @default.
- W2002316265 cites W1973903624 @default.
- W2002316265 cites W1980576110 @default.
- W2002316265 cites W1987580335 @default.
- W2002316265 cites W1989968371 @default.
- W2002316265 cites W2000103911 @default.
- W2002316265 cites W2004374847 @default.
- W2002316265 cites W2007027096 @default.
- W2002316265 cites W2017566434 @default.
- W2002316265 cites W2017881251 @default.
- W2002316265 cites W2020971843 @default.
- W2002316265 cites W2031209863 @default.
- W2002316265 cites W2041776029 @default.
- W2002316265 cites W2044806537 @default.
- W2002316265 cites W2045630066 @default.
- W2002316265 cites W2056553672 @default.
- W2002316265 cites W2057784785 @default.
- W2002316265 cites W2063613980 @default.
- W2002316265 cites W2081029926 @default.
- W2002316265 cites W2081459814 @default.
- W2002316265 cites W2084725617 @default.
- W2002316265 cites W2089163091 @default.
- W2002316265 cites W2090637083 @default.
- W2002316265 cites W2093830420 @default.
- W2002316265 cites W2100837269 @default.
- W2002316265 cites W2135846300 @default.
- W2002316265 cites W2136016201 @default.
- W2002316265 cites W2136437500 @default.
- W2002316265 cites W2141924291 @default.
- W2002316265 cites W2162804001 @default.
- W2002316265 cites W2163746686 @default.
- W2002316265 cites W2229049611 @default.
- W2002316265 cites W2405750565 @default.
- W2002316265 cites W2418438446 @default.
- W2002316265 cites W419268931 @default.
- W2002316265 cites W5755221 @default.
- W2002316265 doi "https://doi.org/10.1074/jbc.271.39.24270" @default.
- W2002316265 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/8798673" @default.
- W2002316265 hasPublicationYear "1996" @default.
- W2002316265 type Work @default.
- W2002316265 sameAs 2002316265 @default.
- W2002316265 citedByCount "38" @default.
- W2002316265 countsByYear W20023162652013 @default.
- W2002316265 countsByYear W20023162652015 @default.
- W2002316265 countsByYear W20023162652016 @default.
- W2002316265 countsByYear W20023162652023 @default.
- W2002316265 crossrefType "journal-article" @default.
- W2002316265 hasAuthorship W2002316265A5021096170 @default.
- W2002316265 hasAuthorship W2002316265A5054907774 @default.
- W2002316265 hasAuthorship W2002316265A5064784884 @default.
- W2002316265 hasAuthorship W2002316265A5072400072 @default.
- W2002316265 hasAuthorship W2002316265A5090012143 @default.
- W2002316265 hasBestOaLocation W20023162651 @default.
- W2002316265 hasConcept C116834253 @default.
- W2002316265 hasConcept C134659918 @default.
- W2002316265 hasConcept C1491633281 @default.
- W2002316265 hasConcept C149774189 @default.
- W2002316265 hasConcept C159654299 @default.
- W2002316265 hasConcept C16224149 @default.
- W2002316265 hasConcept C185592680 @default.
- W2002316265 hasConcept C185946421 @default.
- W2002316265 hasConcept C203014093 @default.
- W2002316265 hasConcept C2778112365 @default.
- W2002316265 hasConcept C2779036427 @default.
- W2002316265 hasConcept C2909375385 @default.
- W2002316265 hasConcept C55493867 @default.
- W2002316265 hasConcept C59822182 @default.
- W2002316265 hasConcept C79879829 @default.
- W2002316265 hasConcept C85789140 @default.
- W2002316265 hasConcept C86803240 @default.
- W2002316265 hasConcept C91682701 @default.
- W2002316265 hasConcept C95444343 @default.
- W2002316265 hasConceptScore W2002316265C116834253 @default.