Matches in SemOpenAlex for { <https://semopenalex.org/work/W2002316401> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2002316401 endingPage "581" @default.
- W2002316401 startingPage "568" @default.
- W2002316401 abstract "AbstractMoffat J. Regional Selective Assistance (RSA) in Scotland: does it make a difference to plant survival, Regional Studies. This paper examines whether receipt of a Regional Selective Assistance (RSA) grant in Scotland has a causal impact on plant survival. The dataset is created by linking a register of grant recipients into the Annual Respondents Database. In order to control for the consequences of self-selection into the ‘treatment’ group, the Cox proportional hazards model is estimated using a sample created by propensity score matching. The preferred estimates suggest that receiving an RSA grant reduces the probability of closure.Moffat J. 苏格兰的区域选择性援助 (RSA) 是否对工厂的生存造成差异,区域研究。本文检视接收苏格兰的区域选择性补助 (RSA),是否对工厂的生存具有因果上的影响。本研究透过将资金接受者的纪录连结至年度回覆数据库来创造数据集。为了将自我选择的后果控制在 “治疗组” 内,将运用藉由倾向分数配对所产生的样本来评估 Cox 比例风险模型。较佳的评估指出,接受 RSA 资金将减少关厂的可能性。Moffat J. La Regional Selective Assistance (RSA) en Écosse: est-ce qu'elle améliore le taux de survie des établissements?, Regional Studies. Cet article cherche à examiner si, oui ou non, bénéficier de la Regional Selective Assistance (RSA; le principal régime d'assistance aux entreprises en vigueur au R-U) en Écosse a eu un impact causal déterminant sur le taux de survie des établissements. On met au point l'ensemble de données en reliant un registre des bénéficiaires de l'aide à la Annual Respondents Database (une base de données combinant dans le temps de l'information provenant de l'enquête menée auprès des entreprises par l'Office for National Statistics). Afin de tenir compte des conséquences de l'autosélection du groupe ‘témoin’, on estime le modèle des risques proportionnels de Cox à partir d'un échantillon créé par l'appariement des coefficients de propension. Les meilleures estimations laissent supposer que bénéficier de l'aide à finalité régionale RSA réduit la probabilité de fermeture.Moffat J. Regional Selective Assistance (RSA) in Schottland: ein Unterschied für das Überleben von Betrieben?, Regional Studies. In diesem Beitrag wird untersucht, ob sich der Erhalt der Subvention ‘Regional Selective Assistance’ (RSA) in Schottland kausal auf das Überleben von Betrieben auswirkt. Der Datensatz wird durch Verknüpfung eines Verzeichnisses der Subventionsempfänger mit der Annual Respondents Database erstellt. Zur Berücksichtigung der Folgen einer Selbstauswahl in der ‘behandelten’ Gruppe wird das Coxsche proportionale Hazard-Modell mit Hilfe einer durch Propensity Score Matching erstellten Stichprobe geschätzt. Aus den bevorzugten Schätzungen geht hervor, dass der Erhalt einer RSA-Subvention die Wahrscheinlichkeit einer Betriebsschließung verringert.Moffat J. Ayuda selectiva regional en Escocia: ¿tiene algún efecto en la supervivencia de las empresas?, Regional Studies. En este artículo se examina si recibir una ayuda selectiva regional (Regional Selective Assistance) en Escocia tiene un efecto causal en la supervivencia de las empresas. Se ha creado un grupo de datos al enlazar un registro de los receptores de subvenciones con la base de datos anuales de encuestados. A fin de tener en cuenta las consecuencias de la autoselección en el grupo de ‘tratamiento’, se realiza una estimación del modelo de riesgos proporcionales formulado por Cox al usar una muestra creada mediante la comparación de resultados tendenciales. Los cálculos preferidos indican que recibir una ayuda selectiva regional reduce el riesgo del cierre de empresas.KeywordsRegional Selective Assistance (RSA)Plant closurePropensity score matchingKeywords区域选择性援助 (RSA)工厂关闭倾向分数配对KeywordsRegional Selective Assistance (RSA)FermetureAppariement des coefficients de propensionKeywordsRegional Selective Assistance (RSA)BetriebsschließungPropensity Score MatchingKeywordsAyuda selectiva regionalCierre de empresasComparación de resultados tendencialesJEL classifications: D2H2L2 AcknowledgementsThis work contains statistical data from the Office for National Statistics (ONS) which is Crown copyright and reproduced with the permission of the controller of Her Majesty's Stationery Office (HMSO) and the Queen's Printer for Scotland. The use of ONS statistical data in this work does not imply the endorsement of the ONS in relation to the interpretation or analysis of the statistical data. This work uses research datasets which may not exactly reproduce National Statistics aggregates. This paper is a substantially revised version of a chapter of the author's PhD thesis at the University of Glasgow. The thesis was jointly funded by the Economics and Social Research Council (ESRC) and the Scottish Government. Thanks are due to Professor Richard Harris for his helpful comments on earlier versions of this paper.Notes1. According to the most recent annual summary, 23% of the accepted offers in 2009/2010 were made to foreign-owned companies, while 40% of the total value of accepted offers went to foreign-owned companies (Scottish Enterprise, 2011).2. The potential for the creation of agglomeration externalities is one rationale for the existence of regional grant schemes. Another rationale based on externalities is implied by the model of Keuschnigg Citation(1998). This suggests that capital investment generates an externality because it creates new firms which increases product diversity and leads to greater specialization in production. This lowers the price of capital goods for all firms. A final rationale is that capital grants redress the market failure of incomplete financial markets.3. Data covering 1984–2005 are used in the empirical analysis below. The start date of 1984 was chosen because the coverage of the ARD became more comprehensive in this year.4. Because the variance of the data is lower using this method than if data were available for every plant, the standard errors on the estimated coefficients will be artificially reduced. However, using reporting unit data is not a solution to this problem as they also reduce the variance of the data through the aggregation of potentially disparate plants.5. This is done in STATA 9.2 using the ‘stphtest’ command.6. The decision of whether or not a grant application is successful is taken by a governmental body. However, this does not alter the fact that the ‘treated’ and ‘untreated’ group will have different characteristics. Indeed, if the government tries to choose ‘winners’, it will increase the likelihood of ‘treated’ and ‘untreated’ groups having different characteristics.7. Propensity score matching is performed in STATA 9.2 using the ‘psmatch2’ command developed by Leuven and Sianesi (2003).8. This methodology will only measure the direct impact of ‘treatment’ on the probability of closure and not indirect impacts that operate through any of the covariates. For instance, if receipt of an RSA grant has a direct impact on the hazard rate and an indirect impact through employment, the coefficient on the RSA dummy obtained here will only measure the former. Experimentation with alternative approaches using lagged covariates provided unsatisfactory results because of the associated loss in sample size caused by the need for plants to be observed in at least two consecutive time periods to be included in the sample.9. Such an approach is recommended by Imbens and Wooldridge Citation(2009) over the simple matching estimator in their survey of the literature.10. The hazard function and the survivor function are linked by the following equation: where f(t) is the probability of closure in time t. 11. The estimates of both survivor functions are equal to 1 in the first year because plants that fail in their first year are not observed.12. Many studies (for example, Disney et al., Citation2003; Harris and Li, Citation2010) include interactions between each variable in xit and the age variable to control for the influence of age. This is not necessary here because the influence of age is controlled for by the stratification of the model.13. The reduction in the probability of closure is calculated using the following formula: .14. These new estimates are obtained using unweighted data. This is because the weights are not appropriate when only a subset of the full sample is used." @default.
- W2002316401 created "2016-06-24" @default.
- W2002316401 creator A5020044238 @default.
- W2002316401 date "2013-05-14" @default.
- W2002316401 modified "2023-10-04" @default.
- W2002316401 title "Regional Selective Assistance (RSA) in Scotland: Does It Make a Difference to Plant Survival?" @default.
- W2002316401 cites W1598630259 @default.
- W2002316401 cites W1599118273 @default.
- W2002316401 cites W1977247044 @default.
- W2002316401 cites W1980072647 @default.
- W2002316401 cites W1983687204 @default.
- W2002316401 cites W1992167807 @default.
- W2002316401 cites W1995052476 @default.
- W2002316401 cites W2007271675 @default.
- W2002316401 cites W2007507502 @default.
- W2002316401 cites W2013915050 @default.
- W2002316401 cites W2017299421 @default.
- W2002316401 cites W2027641150 @default.
- W2002316401 cites W2039200782 @default.
- W2002316401 cites W2041989321 @default.
- W2002316401 cites W2056972373 @default.
- W2002316401 cites W2078575233 @default.
- W2002316401 cites W2090464938 @default.
- W2002316401 cites W2102961061 @default.
- W2002316401 cites W2105106514 @default.
- W2002316401 cites W2113133677 @default.
- W2002316401 cites W2144900414 @default.
- W2002316401 cites W2150291618 @default.
- W2002316401 cites W2153797162 @default.
- W2002316401 cites W2230529044 @default.
- W2002316401 cites W2240769110 @default.
- W2002316401 cites W3121385028 @default.
- W2002316401 cites W3121854676 @default.
- W2002316401 cites W3122188960 @default.
- W2002316401 cites W3123729090 @default.
- W2002316401 cites W3123974754 @default.
- W2002316401 cites W3124474628 @default.
- W2002316401 cites W3126005629 @default.
- W2002316401 cites W3147894994 @default.
- W2002316401 cites W3214661451 @default.
- W2002316401 cites W4236680753 @default.
- W2002316401 cites W4293241248 @default.
- W2002316401 doi "https://doi.org/10.1080/00343404.2013.786826" @default.
- W2002316401 hasPublicationYear "2013" @default.
- W2002316401 type Work @default.
- W2002316401 sameAs 2002316401 @default.
- W2002316401 citedByCount "2" @default.
- W2002316401 countsByYear W20023164012019 @default.
- W2002316401 countsByYear W20023164012022 @default.
- W2002316401 crossrefType "journal-article" @default.
- W2002316401 hasAuthorship W2002316401A5020044238 @default.
- W2002316401 hasConcept C148383697 @default.
- W2002316401 hasConcept C205649164 @default.
- W2002316401 hasConcept C2988954192 @default.
- W2002316401 hasConcept C2991830913 @default.
- W2002316401 hasConceptScore W2002316401C148383697 @default.
- W2002316401 hasConceptScore W2002316401C205649164 @default.
- W2002316401 hasConceptScore W2002316401C2988954192 @default.
- W2002316401 hasConceptScore W2002316401C2991830913 @default.
- W2002316401 hasIssue "4" @default.
- W2002316401 hasLocation W20023164011 @default.
- W2002316401 hasOpenAccess W2002316401 @default.
- W2002316401 hasPrimaryLocation W20023164011 @default.
- W2002316401 hasRelatedWork W1978600485 @default.
- W2002316401 hasRelatedWork W2121631638 @default.
- W2002316401 hasRelatedWork W2138421437 @default.
- W2002316401 hasRelatedWork W2192300822 @default.
- W2002316401 hasRelatedWork W2206523275 @default.
- W2002316401 hasRelatedWork W2336075499 @default.
- W2002316401 hasRelatedWork W2601998859 @default.
- W2002316401 hasRelatedWork W2792950971 @default.
- W2002316401 hasRelatedWork W2994311867 @default.
- W2002316401 hasRelatedWork W3127822564 @default.
- W2002316401 hasVolume "49" @default.
- W2002316401 isParatext "false" @default.
- W2002316401 isRetracted "false" @default.
- W2002316401 magId "2002316401" @default.
- W2002316401 workType "article" @default.