Matches in SemOpenAlex for { <https://semopenalex.org/work/W2002612324> ?p ?o ?g. }
- W2002612324 endingPage "176" @default.
- W2002612324 startingPage "155" @default.
- W2002612324 abstract "The physical processes that govern the grain size of rocks in the upper mantle are examined. The analysis is based on the experimental data on creep, recrystallization, and grain growth in dunites and on a theoretical model for the thermomechanical structure of the cooling moving lithosphere. The grain size of rocks is shown to be determined by the in situ stress only at the deeper part where the temperature is high enough to allow significant strain rate. Above this depth, the microstructures record the thermomechanical history of rocks rather than the in situ stress. In the case of the oceanic lithosphere where the thermomechanical history is best known, the following features of grain-size distribution are found. At the uppermost mantle, where the amount of grain growth is limited, the grain size is determined by the initial value and the growth rate, and, where the effect of grain growth dominates, it increases with depth. When the amount of grain growth becomes large and the grain size reaches the steady state size corresponding to the ambient stress while the rock is hot enough to deform, the grain size is then determined by the applied stress. This grain size is, however, frozen, when the rock gets cool and the strain rate becomes too small to induce any further dynamic recrystallization. Thus, at the intermediate depth region, the grain size records the fossil (frozen) stress at which the microstructures of rock have been frozen. Since the frozen stress increases with age, the grain size in this depth interval decreases with depth. Finally, the grain size below this level reflects the in situ stress, and increases with depth, its extent being dependent on the nature of return flow in the deep mantle. Thus the grain size versus depth relation may show a sigmoid curve. The qualitative features of this curve may be similar also in the case of the continental lithosphere, if a similar thermal event (i.e., the intrusion of hot material and subsequent cooling) occurs. The results are quite consistent with the observed depth variation of olivine grain size in peridotite nodules (Avé Lallemant et al., 1980). The present model suggests that the depth of minimum grain size (65 and 150 km at the continental rift zone and the shield region respectively) corresponds to that where the mechanical properties of the upper mantle change from elastic to ductile at tectonic stress levels (~ 1 MPa) and in the geological time scale. This result leads to a new definition of the thickness of lithosphere in terms of its rheological properties. This thickness is about twice as large as that inferred from the flexure of lithosphere but approximately equal to seismic thickness. The model suggests the importance of grain growth as well as dynamic recrystallization and plastic flow in determining the texture of upper mantle rocks and therefore seismic anisotropy." @default.
- W2002612324 created "2016-06-24" @default.
- W2002612324 creator A5041118412 @default.
- W2002612324 date "1984-04-01" @default.
- W2002612324 modified "2023-10-01" @default.
- W2002612324 title "Grain-size distribution and rheology of the upper mantle" @default.
- W2002612324 cites W1539277668 @default.
- W2002612324 cites W1969149075 @default.
- W2002612324 cites W1969357470 @default.
- W2002612324 cites W1969474365 @default.
- W2002612324 cites W1971644794 @default.
- W2002612324 cites W1974013445 @default.
- W2002612324 cites W1977557288 @default.
- W2002612324 cites W1979638730 @default.
- W2002612324 cites W1980652828 @default.
- W2002612324 cites W2010954089 @default.
- W2002612324 cites W2012428364 @default.
- W2002612324 cites W2013701058 @default.
- W2002612324 cites W2014543994 @default.
- W2002612324 cites W2014774174 @default.
- W2002612324 cites W2014935357 @default.
- W2002612324 cites W2015064905 @default.
- W2002612324 cites W2018021437 @default.
- W2002612324 cites W2019580480 @default.
- W2002612324 cites W2040986970 @default.
- W2002612324 cites W2044592095 @default.
- W2002612324 cites W2047259056 @default.
- W2002612324 cites W2051451428 @default.
- W2002612324 cites W2051748599 @default.
- W2002612324 cites W2052018410 @default.
- W2002612324 cites W2062438545 @default.
- W2002612324 cites W2064112521 @default.
- W2002612324 cites W2076314280 @default.
- W2002612324 cites W2081156170 @default.
- W2002612324 cites W2116519903 @default.
- W2002612324 cites W2129488625 @default.
- W2002612324 cites W2147751458 @default.
- W2002612324 cites W2150109587 @default.
- W2002612324 cites W2151686782 @default.
- W2002612324 cites W2163226680 @default.
- W2002612324 cites W2170219059 @default.
- W2002612324 doi "https://doi.org/10.1016/0040-1951(84)90108-2" @default.
- W2002612324 hasPublicationYear "1984" @default.
- W2002612324 type Work @default.
- W2002612324 sameAs 2002612324 @default.
- W2002612324 citedByCount "79" @default.
- W2002612324 countsByYear W20026123242012 @default.
- W2002612324 countsByYear W20026123242013 @default.
- W2002612324 countsByYear W20026123242017 @default.
- W2002612324 countsByYear W20026123242018 @default.
- W2002612324 countsByYear W20026123242019 @default.
- W2002612324 countsByYear W20026123242021 @default.
- W2002612324 countsByYear W20026123242022 @default.
- W2002612324 countsByYear W20026123242023 @default.
- W2002612324 crossrefType "journal-article" @default.
- W2002612324 hasAuthorship W2002612324A5041118412 @default.
- W2002612324 hasConcept C114793014 @default.
- W2002612324 hasConcept C127313418 @default.
- W2002612324 hasConcept C149912024 @default.
- W2002612324 hasConcept C151730666 @default.
- W2002612324 hasConcept C159985019 @default.
- W2002612324 hasConcept C165205528 @default.
- W2002612324 hasConcept C169010117 @default.
- W2002612324 hasConcept C16942324 @default.
- W2002612324 hasConcept C172658604 @default.
- W2002612324 hasConcept C187530423 @default.
- W2002612324 hasConcept C192191005 @default.
- W2002612324 hasConcept C192562407 @default.
- W2002612324 hasConcept C195702682 @default.
- W2002612324 hasConcept C199289684 @default.
- W2002612324 hasConcept C5900021 @default.
- W2002612324 hasConcept C60448018 @default.
- W2002612324 hasConcept C67236022 @default.
- W2002612324 hasConcept C77928131 @default.
- W2002612324 hasConcept C8058405 @default.
- W2002612324 hasConcept C87976508 @default.
- W2002612324 hasConcept C98390173 @default.
- W2002612324 hasConceptScore W2002612324C114793014 @default.
- W2002612324 hasConceptScore W2002612324C127313418 @default.
- W2002612324 hasConceptScore W2002612324C149912024 @default.
- W2002612324 hasConceptScore W2002612324C151730666 @default.
- W2002612324 hasConceptScore W2002612324C159985019 @default.
- W2002612324 hasConceptScore W2002612324C165205528 @default.
- W2002612324 hasConceptScore W2002612324C169010117 @default.
- W2002612324 hasConceptScore W2002612324C16942324 @default.
- W2002612324 hasConceptScore W2002612324C172658604 @default.
- W2002612324 hasConceptScore W2002612324C187530423 @default.
- W2002612324 hasConceptScore W2002612324C192191005 @default.
- W2002612324 hasConceptScore W2002612324C192562407 @default.
- W2002612324 hasConceptScore W2002612324C195702682 @default.
- W2002612324 hasConceptScore W2002612324C199289684 @default.
- W2002612324 hasConceptScore W2002612324C5900021 @default.
- W2002612324 hasConceptScore W2002612324C60448018 @default.
- W2002612324 hasConceptScore W2002612324C67236022 @default.
- W2002612324 hasConceptScore W2002612324C77928131 @default.
- W2002612324 hasConceptScore W2002612324C8058405 @default.
- W2002612324 hasConceptScore W2002612324C87976508 @default.
- W2002612324 hasConceptScore W2002612324C98390173 @default.