Matches in SemOpenAlex for { <https://semopenalex.org/work/W2002697217> ?p ?o ?g. }
- W2002697217 endingPage "1022" @default.
- W2002697217 startingPage "1001" @default.
- W2002697217 abstract "Abstract The purpose of this review is to present techniques, advances, problems, and new developments in modelling the progressive mechanical breakdown of, and associated fluid flow in, intact heterogeneous rock. In general, the theoretical approach to this physical process can be classified into the three categories of discrete models based on fracture mechanics, the continuum damage mechanics approach, and statistical approaches. This categorisation forms the skeleton of this article. Recognising that intact rock contains ubiquitous cracks and flaws between grains and particles of various shapes, fracture mechanics has been widely used to study the mechanical breakdown process in terms of the growth of these discrete defects. Two types of fracture mechanics models, namely open crack and sliding crack models, are used to simulate the progressive microfracturing of rock upon loading, and the application of these to modelling mechanical breakdown is discussed in Section 2. As an alternative to the explicit treatment of cracking given by fracture mechanics, continuum damage mechanics (CDM) takes a phenomenological route that considers the averaged effect of microstructural changes, and has found widespread use in simulating macroscopic stress–strain responses. Through the introduction of damage variables as state operators that quantify change in mechanical properties such as stiffness and strength with respect to damage, CDM models are capable of reproducing realistic hydro-mechanical responses during rock disintegration. This method is discussed in Section 3. Recognising that intact rock is never strictly an isotropic and homogeneous material, statistical approaches use, in general terms, statistical distributions as a means of describing the variation of material properties in natural rock. These approaches have enjoyed a great deal of attention in past decades. By employing different numerical schemes, three major statistical models have been developed: continuum-based damage mechanics models, particle models, and network/lattice models. The merits and drawbacks of these models are discussed in Section 4. Coupled deformation and pore fluid diffusion can be important in the process of progressive breakdown. This poromechanical effect involves the interaction between the solid constituents of, and the interstitial fluids in, heterogeneous rocks under those circumstances when mechanical perturbation occurs sufficiently rapidly that induced pore pressure changes cannot fully dissipate. The mechanisms and analytical approaches, and their development relevant to progressive mechanical breakdown and fluid-flow modelling, are outlined in Section 5. Finally, based on this review, remarks are made summarising the current progress of, and fundamental problems with, these developments. Ideas for further improvements towards more comprehensive and robust techniques are suggested." @default.
- W2002697217 created "2016-06-24" @default.
- W2002697217 creator A5021669946 @default.
- W2002697217 creator A5074694753 @default.
- W2002697217 date "2006-10-01" @default.
- W2002697217 modified "2023-09-26" @default.
- W2002697217 title "A review of the state of the art in modelling progressive mechanical breakdown and associated fluid flow in intact heterogeneous rocks" @default.
- W2002697217 cites W1964786148 @default.
- W2002697217 cites W1964873794 @default.
- W2002697217 cites W1965235016 @default.
- W2002697217 cites W1971755909 @default.
- W2002697217 cites W1976223539 @default.
- W2002697217 cites W1979055256 @default.
- W2002697217 cites W1980168305 @default.
- W2002697217 cites W1981317385 @default.
- W2002697217 cites W1981719774 @default.
- W2002697217 cites W1982833447 @default.
- W2002697217 cites W1983633760 @default.
- W2002697217 cites W1984507343 @default.
- W2002697217 cites W1985147191 @default.
- W2002697217 cites W1985768928 @default.
- W2002697217 cites W1987576086 @default.
- W2002697217 cites W1991022442 @default.
- W2002697217 cites W1991905034 @default.
- W2002697217 cites W1993987657 @default.
- W2002697217 cites W1995101218 @default.
- W2002697217 cites W1995110867 @default.
- W2002697217 cites W1996102082 @default.
- W2002697217 cites W1997151995 @default.
- W2002697217 cites W1997928276 @default.
- W2002697217 cites W2001322911 @default.
- W2002697217 cites W2004465273 @default.
- W2002697217 cites W2005887520 @default.
- W2002697217 cites W2006730264 @default.
- W2002697217 cites W2006757617 @default.
- W2002697217 cites W2007248266 @default.
- W2002697217 cites W2011896412 @default.
- W2002697217 cites W2013143345 @default.
- W2002697217 cites W2014610222 @default.
- W2002697217 cites W2015387294 @default.
- W2002697217 cites W2016863587 @default.
- W2002697217 cites W2018401661 @default.
- W2002697217 cites W2018525536 @default.
- W2002697217 cites W2019067665 @default.
- W2002697217 cites W2024566842 @default.
- W2002697217 cites W2027681027 @default.
- W2002697217 cites W2028770012 @default.
- W2002697217 cites W2029525316 @default.
- W2002697217 cites W2032950174 @default.
- W2002697217 cites W2033463087 @default.
- W2002697217 cites W2034374704 @default.
- W2002697217 cites W2036475683 @default.
- W2002697217 cites W2037871991 @default.
- W2002697217 cites W2038405013 @default.
- W2002697217 cites W2039270631 @default.
- W2002697217 cites W2040911656 @default.
- W2002697217 cites W2047194833 @default.
- W2002697217 cites W2049061090 @default.
- W2002697217 cites W2050302620 @default.
- W2002697217 cites W2055072688 @default.
- W2002697217 cites W2057038751 @default.
- W2002697217 cites W2062444841 @default.
- W2002697217 cites W2064363825 @default.
- W2002697217 cites W2069272856 @default.
- W2002697217 cites W2069601586 @default.
- W2002697217 cites W2070354854 @default.
- W2002697217 cites W2071710949 @default.
- W2002697217 cites W2073063110 @default.
- W2002697217 cites W2074137491 @default.
- W2002697217 cites W2074907204 @default.
- W2002697217 cites W2076164139 @default.
- W2002697217 cites W2076189346 @default.
- W2002697217 cites W2079682366 @default.
- W2002697217 cites W2082076733 @default.
- W2002697217 cites W2086015055 @default.
- W2002697217 cites W2089376671 @default.
- W2002697217 cites W2089587803 @default.
- W2002697217 cites W2090979089 @default.
- W2002697217 cites W2091389723 @default.
- W2002697217 cites W2091630970 @default.
- W2002697217 cites W2094624295 @default.
- W2002697217 cites W2094721449 @default.
- W2002697217 cites W2097471771 @default.
- W2002697217 cites W2098272641 @default.
- W2002697217 cites W2104694156 @default.
- W2002697217 cites W2133228730 @default.
- W2002697217 cites W2139543996 @default.
- W2002697217 cites W2140635518 @default.
- W2002697217 cites W2156524938 @default.
- W2002697217 cites W2160234665 @default.
- W2002697217 cites W2165829988 @default.
- W2002697217 cites W2727420541 @default.
- W2002697217 cites W4211139558 @default.
- W2002697217 cites W4232228172 @default.
- W2002697217 cites W4253544734 @default.
- W2002697217 cites W4255841407 @default.
- W2002697217 doi "https://doi.org/10.1016/j.ijrmms.2006.03.004" @default.
- W2002697217 hasPublicationYear "2006" @default.