Matches in SemOpenAlex for { <https://semopenalex.org/work/W2002806367> ?p ?o ?g. }
- W2002806367 endingPage "34" @default.
- W2002806367 startingPage "21" @default.
- W2002806367 abstract "The boron isotope systematics has been determined for azooxanthellate scleractinian corals from a wide range of both deep-sea and shallow-water environments. The aragonitic coral species, Caryophyllia smithii, Desmophyllum dianthus, Enallopsammia rostrata, Lophelia pertusa, and Madrepora oculata, are all found to have relatively high δ11B compositions ranging from 23.2‰ to 28.7‰. These values lie substantially above the pH-dependent inorganic seawater borate equilibrium curve, indicative of strong up-regulation of pH of the internal calcifying fluid (pHcf), being elevated by ∼0.6–0.8 units (ΔpH) relative to ambient seawater. In contrast, the deep-sea calcitic coral Corallium sp. has a significantly lower δ11B composition of 15.5‰, with a corresponding lower ΔpH value of ∼0.3 units, reflecting the importance of mineralogical control on biological pH up-regulation. The solitary coral D. dianthus was sampled over a wide range of seawater pHT and shows an approximate linear correlation with ΔpHDesmo = 6.43 − 0.71pHT (r2 = 0.79). An improved correlation is however found with the closely related parameter of seawater aragonite saturation state, where ΔpHDesmo = 1.09 − 0.14Ωarag (r2 = 0.95), indicating the important control that carbonate saturation state has on calcification. The ability to up-regulate internal pHcf, and consequently Ωcf, of the calcifying fluid is therefore a process present in both azooxanthellate and zooxanthellate aragonitic corals, and is attributed to the action of Ca2+-ATPase in modulating the proton gradient between seawater and the site of calcification. These findings also show that the boron isotopic compositions (δ11Bcarb) of aragonitic corals are highly systematic and consistent with direct uptake of the borate species within the biologically controlled extracellular calcifying medium. We also show that the relatively strong up-regulation of pH and consequent elevation of the internal carbonate saturation state (Ωcf ∼8.5 to ∼13) at the site of calcification by cold-water corals, facilitates calcification at or in some cases below the aragonite saturation horizon, providing a greater ability to adapt to the already low and now decreasing carbonate ion concentrations. Although providing greater resilience to the effects of ocean acidification and enhancing rates of calcification with increasing temperature, the process of internal pHcf up-regulation has an associated energetic cost, and therefore growth-rate cost, of ∼10% per 0.1 pH unit decrease in seawater pHT. Furthermore, as the aragonite saturation horizon shoals with rapidly increasing pCO2 and Ωarag < 1, increased dissolution of the exposed skeleton will ultimately limit their survival in the deep oceans." @default.
- W2002806367 created "2016-06-24" @default.
- W2002806367 creator A5006431613 @default.
- W2002806367 creator A5010762471 @default.
- W2002806367 creator A5040079663 @default.
- W2002806367 creator A5040395981 @default.
- W2002806367 creator A5043402504 @default.
- W2002806367 creator A5064565499 @default.
- W2002806367 creator A5068370232 @default.
- W2002806367 creator A5080989824 @default.
- W2002806367 creator A5082176636 @default.
- W2002806367 creator A5084680100 @default.
- W2002806367 creator A5085544086 @default.
- W2002806367 date "2012-06-01" @default.
- W2002806367 modified "2023-10-12" @default.
- W2002806367 title "Resilience of cold-water scleractinian corals to ocean acidification: Boron isotopic systematics of pH and saturation state up-regulation" @default.
- W2002806367 cites W124575274 @default.
- W2002806367 cites W1750206573 @default.
- W2002806367 cites W1759834790 @default.
- W2002806367 cites W1845445271 @default.
- W2002806367 cites W1964887643 @default.
- W2002806367 cites W1975300854 @default.
- W2002806367 cites W1980499669 @default.
- W2002806367 cites W1991160471 @default.
- W2002806367 cites W1996741352 @default.
- W2002806367 cites W1998431158 @default.
- W2002806367 cites W1998456893 @default.
- W2002806367 cites W2008813067 @default.
- W2002806367 cites W2014377685 @default.
- W2002806367 cites W2046006570 @default.
- W2002806367 cites W2052839099 @default.
- W2002806367 cites W2054495805 @default.
- W2002806367 cites W2055334505 @default.
- W2002806367 cites W2057228399 @default.
- W2002806367 cites W2060012482 @default.
- W2002806367 cites W2063955458 @default.
- W2002806367 cites W2065511359 @default.
- W2002806367 cites W2066715697 @default.
- W2002806367 cites W2068375361 @default.
- W2002806367 cites W2069281010 @default.
- W2002806367 cites W2078106686 @default.
- W2002806367 cites W2080970317 @default.
- W2002806367 cites W2081076094 @default.
- W2002806367 cites W2087390324 @default.
- W2002806367 cites W2087827426 @default.
- W2002806367 cites W2094836649 @default.
- W2002806367 cites W2099819402 @default.
- W2002806367 cites W2103819980 @default.
- W2002806367 cites W2113285333 @default.
- W2002806367 cites W2113297575 @default.
- W2002806367 cites W2114311956 @default.
- W2002806367 cites W2116413923 @default.
- W2002806367 cites W2119317178 @default.
- W2002806367 cites W2128886271 @default.
- W2002806367 cites W2132881865 @default.
- W2002806367 cites W2137258492 @default.
- W2002806367 cites W2138490279 @default.
- W2002806367 cites W2141282777 @default.
- W2002806367 cites W2141483467 @default.
- W2002806367 cites W2145633928 @default.
- W2002806367 cites W2166646125 @default.
- W2002806367 cites W2169876508 @default.
- W2002806367 cites W2171205435 @default.
- W2002806367 cites W2171829412 @default.
- W2002806367 cites W2172224972 @default.
- W2002806367 doi "https://doi.org/10.1016/j.gca.2012.03.027" @default.
- W2002806367 hasPublicationYear "2012" @default.
- W2002806367 type Work @default.
- W2002806367 sameAs 2002806367 @default.
- W2002806367 citedByCount "195" @default.
- W2002806367 countsByYear W20028063672012 @default.
- W2002806367 countsByYear W20028063672013 @default.
- W2002806367 countsByYear W20028063672014 @default.
- W2002806367 countsByYear W20028063672015 @default.
- W2002806367 countsByYear W20028063672016 @default.
- W2002806367 countsByYear W20028063672017 @default.
- W2002806367 countsByYear W20028063672018 @default.
- W2002806367 countsByYear W20028063672019 @default.
- W2002806367 countsByYear W20028063672020 @default.
- W2002806367 countsByYear W20028063672021 @default.
- W2002806367 countsByYear W20028063672022 @default.
- W2002806367 countsByYear W20028063672023 @default.
- W2002806367 crossrefType "journal-article" @default.
- W2002806367 hasAuthorship W2002806367A5006431613 @default.
- W2002806367 hasAuthorship W2002806367A5010762471 @default.
- W2002806367 hasAuthorship W2002806367A5040079663 @default.
- W2002806367 hasAuthorship W2002806367A5040395981 @default.
- W2002806367 hasAuthorship W2002806367A5043402504 @default.
- W2002806367 hasAuthorship W2002806367A5064565499 @default.
- W2002806367 hasAuthorship W2002806367A5068370232 @default.
- W2002806367 hasAuthorship W2002806367A5080989824 @default.
- W2002806367 hasAuthorship W2002806367A5082176636 @default.
- W2002806367 hasAuthorship W2002806367A5084680100 @default.
- W2002806367 hasAuthorship W2002806367A5085544086 @default.
- W2002806367 hasConcept C107872376 @default.
- W2002806367 hasConcept C111368507 @default.
- W2002806367 hasConcept C114614502 @default.
- W2002806367 hasConcept C127313418 @default.