Matches in SemOpenAlex for { <https://semopenalex.org/work/W2002909574> ?p ?o ?g. }
- W2002909574 endingPage "4048" @default.
- W2002909574 startingPage "4032" @default.
- W2002909574 abstract "With a view to the rational design of selective quinoxaline derivatives, 2D and 3D-QSAR models have been developed for the prediction of anti-tubercular activities. Successful implementation of a predictive QSAR model largely depends on the selection of a preferred set of molecular descriptors that can signify the chemico – biological interaction. Genetic algorithm (GA) and simulated annealing (SA) are applied as variable selection methods for model development. 2D-QSAR modeling using GA or SA based partial least squares (GA-PLS and SA-PLS) methods identified some important topological and electrostatic descriptors as important factor for tubercular activity. Kohonen network and counter propagation artificial neural network (CP-ANN) considering GA and SA based feature selection methods have been applied for such QSAR modeling of Quinoxaline compounds. Out of a variable pool of 380 molecular descriptors, predictive QSAR models are developed for the training set and validated on the test set compounds and a comparative study of the relative effectiveness of linear and non-linear approaches has been investigated. Further analysis using 3D-QSAR technique identifies two models obtained by GA-PLS and SA-PLS methods leading to anti-tubercular activity prediction. The influences of steric and electrostatic field effects generated by the contribution plots are discussed. The results indicate that SA is a very effective variable selection approach for such 3D-QSAR modeling. Keywords: Quinoxaline derivatives, Quantitative Structure Activity Relationship (QSAR), 2D and 3D descriptors, genetic algorithm (GA), simulated annealing (SA), Partial Least Squares (PLS), counter propagation artificial neural network (CP-ANN)" @default.
- W2002909574 created "2016-06-24" @default.
- W2002909574 creator A5055862120 @default.
- W2002909574 creator A5068917935 @default.
- W2002909574 date "2009-10-01" @default.
- W2002909574 modified "2023-10-16" @default.
- W2002909574 title "QSAR Modeling for Quinoxaline Derivatives using Genetic Algorithm and Simulated Annealing Based Feature Selection" @default.
- W2002909574 cites W1488799823 @default.
- W2002909574 cites W1530852995 @default.
- W2002909574 cites W1531524766 @default.
- W2002909574 cites W1541765387 @default.
- W2002909574 cites W1975046742 @default.
- W2002909574 cites W1975875826 @default.
- W2002909574 cites W1979820878 @default.
- W2002909574 cites W2019893484 @default.
- W2002909574 cites W2019980219 @default.
- W2002909574 cites W2021229217 @default.
- W2002909574 cites W2024060531 @default.
- W2002909574 cites W2055280453 @default.
- W2002909574 cites W2056760934 @default.
- W2002909574 cites W2058602321 @default.
- W2002909574 cites W2063060349 @default.
- W2002909574 cites W2067941404 @default.
- W2002909574 cites W2077228735 @default.
- W2002909574 cites W2091823093 @default.
- W2002909574 cites W2119479037 @default.
- W2002909574 cites W2149636854 @default.
- W2002909574 cites W2158996711 @default.
- W2002909574 cites W2162035221 @default.
- W2002909574 cites W2315806009 @default.
- W2002909574 cites W2904250082 @default.
- W2002909574 cites W2951468343 @default.
- W2002909574 cites W2999197824 @default.
- W2002909574 cites W388296777 @default.
- W2002909574 doi "https://doi.org/10.2174/092986709789352303" @default.
- W2002909574 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19747124" @default.
- W2002909574 hasPublicationYear "2009" @default.
- W2002909574 type Work @default.
- W2002909574 sameAs 2002909574 @default.
- W2002909574 citedByCount "59" @default.
- W2002909574 countsByYear W20029095742012 @default.
- W2002909574 countsByYear W20029095742013 @default.
- W2002909574 countsByYear W20029095742014 @default.
- W2002909574 countsByYear W20029095742015 @default.
- W2002909574 countsByYear W20029095742016 @default.
- W2002909574 countsByYear W20029095742017 @default.
- W2002909574 countsByYear W20029095742018 @default.
- W2002909574 countsByYear W20029095742019 @default.
- W2002909574 countsByYear W20029095742020 @default.
- W2002909574 countsByYear W20029095742021 @default.
- W2002909574 countsByYear W20029095742022 @default.
- W2002909574 countsByYear W20029095742023 @default.
- W2002909574 crossrefType "journal-article" @default.
- W2002909574 hasAuthorship W2002909574A5055862120 @default.
- W2002909574 hasAuthorship W2002909574A5068917935 @default.
- W2002909574 hasConcept C11413529 @default.
- W2002909574 hasConcept C119857082 @default.
- W2002909574 hasConcept C126980161 @default.
- W2002909574 hasConcept C148483581 @default.
- W2002909574 hasConcept C154945302 @default.
- W2002909574 hasConcept C164126121 @default.
- W2002909574 hasConcept C169272836 @default.
- W2002909574 hasConcept C169903167 @default.
- W2002909574 hasConcept C178790620 @default.
- W2002909574 hasConcept C185592680 @default.
- W2002909574 hasConcept C186060115 @default.
- W2002909574 hasConcept C22354355 @default.
- W2002909574 hasConcept C2776214188 @default.
- W2002909574 hasConcept C2780362310 @default.
- W2002909574 hasConcept C41008148 @default.
- W2002909574 hasConcept C50644808 @default.
- W2002909574 hasConcept C86803240 @default.
- W2002909574 hasConcept C8880873 @default.
- W2002909574 hasConceptScore W2002909574C11413529 @default.
- W2002909574 hasConceptScore W2002909574C119857082 @default.
- W2002909574 hasConceptScore W2002909574C126980161 @default.
- W2002909574 hasConceptScore W2002909574C148483581 @default.
- W2002909574 hasConceptScore W2002909574C154945302 @default.
- W2002909574 hasConceptScore W2002909574C164126121 @default.
- W2002909574 hasConceptScore W2002909574C169272836 @default.
- W2002909574 hasConceptScore W2002909574C169903167 @default.
- W2002909574 hasConceptScore W2002909574C178790620 @default.
- W2002909574 hasConceptScore W2002909574C185592680 @default.
- W2002909574 hasConceptScore W2002909574C186060115 @default.
- W2002909574 hasConceptScore W2002909574C22354355 @default.
- W2002909574 hasConceptScore W2002909574C2776214188 @default.
- W2002909574 hasConceptScore W2002909574C2780362310 @default.
- W2002909574 hasConceptScore W2002909574C41008148 @default.
- W2002909574 hasConceptScore W2002909574C50644808 @default.
- W2002909574 hasConceptScore W2002909574C86803240 @default.
- W2002909574 hasConceptScore W2002909574C8880873 @default.
- W2002909574 hasIssue "30" @default.
- W2002909574 hasLocation W20029095741 @default.
- W2002909574 hasLocation W20029095742 @default.
- W2002909574 hasOpenAccess W2002909574 @default.
- W2002909574 hasPrimaryLocation W20029095741 @default.
- W2002909574 hasRelatedWork W2002909574 @default.
- W2002909574 hasRelatedWork W2021733249 @default.