Matches in SemOpenAlex for { <https://semopenalex.org/work/W2003059629> ?p ?o ?g. }
- W2003059629 endingPage "1185" @default.
- W2003059629 startingPage "1174" @default.
- W2003059629 abstract "Ship detection on spaceborne images has attracted great interest in the applications of maritime security and traffic control. Optical images stand out from other remote sensing images in object detection due to their higher resolution and more visualized contents. However, most of the popular techniques for ship detection from optical spaceborne images have two shortcomings: 1) Compared with infrared and synthetic aperture radar images, their results are affected by weather conditions, like clouds and ocean waves, and 2) the higher resolution results in larger data volume, which makes processing more difficult. Most of the previous works mainly focus on solving the first problem by improving segmentation or classification with complicated algorithms. These methods face difficulty in efficiently balancing performance and complexity. In this paper, we propose a ship detection approach to solving the aforementioned two issues using wavelet coefficients extracted from JPEG2000 compressed domain combined with deep neural network (DNN) and extreme learning machine (ELM). Compressed domain is adopted for fast ship candidate extraction, DNN is exploited for high-level feature representation and classification, and ELM is used for efficient feature pooling and decision making. Extensive experiments demonstrate that, in comparison with the existing relevant state-of-the-art approaches, the proposed method requires less detection time and achieves higher detection accuracy." @default.
- W2003059629 created "2016-06-24" @default.
- W2003059629 creator A5051880364 @default.
- W2003059629 creator A5061746912 @default.
- W2003059629 creator A5063066870 @default.
- W2003059629 creator A5079668307 @default.
- W2003059629 date "2015-03-01" @default.
- W2003059629 modified "2023-10-18" @default.
- W2003059629 title "Compressed-Domain Ship Detection on Spaceborne Optical Image Using Deep Neural Network and Extreme Learning Machine" @default.
- W2003059629 cites W1497068736 @default.
- W2003059629 cites W180242331 @default.
- W2003059629 cites W1972600947 @default.
- W2003059629 cites W1991811454 @default.
- W2003059629 cites W2017212187 @default.
- W2003059629 cites W2025768430 @default.
- W2003059629 cites W2026131661 @default.
- W2003059629 cites W2080890025 @default.
- W2003059629 cites W2100495367 @default.
- W2003059629 cites W2100503224 @default.
- W2003059629 cites W2111072639 @default.
- W2003059629 cites W2123105151 @default.
- W2003059629 cites W2123222342 @default.
- W2003059629 cites W2132368769 @default.
- W2003059629 cites W2133285226 @default.
- W2003059629 cites W2136922672 @default.
- W2003059629 cites W2137782143 @default.
- W2003059629 cites W2138454826 @default.
- W2003059629 cites W2141005164 @default.
- W2003059629 cites W2145307864 @default.
- W2003059629 cites W2145904202 @default.
- W2003059629 cites W2151103935 @default.
- W2003059629 cites W2152328854 @default.
- W2003059629 cites W2158054309 @default.
- W2003059629 cites W2161969291 @default.
- W2003059629 cites W2164117960 @default.
- W2003059629 cites W2164383685 @default.
- W2003059629 cites W2165090887 @default.
- W2003059629 cites W28988658 @default.
- W2003059629 cites W3099514962 @default.
- W2003059629 cites W4231109964 @default.
- W2003059629 cites W56937753 @default.
- W2003059629 cites W64027530 @default.
- W2003059629 doi "https://doi.org/10.1109/tgrs.2014.2335751" @default.
- W2003059629 hasPublicationYear "2015" @default.
- W2003059629 type Work @default.
- W2003059629 sameAs 2003059629 @default.
- W2003059629 citedByCount "337" @default.
- W2003059629 countsByYear W20030596292015 @default.
- W2003059629 countsByYear W20030596292016 @default.
- W2003059629 countsByYear W20030596292017 @default.
- W2003059629 countsByYear W20030596292018 @default.
- W2003059629 countsByYear W20030596292019 @default.
- W2003059629 countsByYear W20030596292020 @default.
- W2003059629 countsByYear W20030596292021 @default.
- W2003059629 countsByYear W20030596292022 @default.
- W2003059629 countsByYear W20030596292023 @default.
- W2003059629 crossrefType "journal-article" @default.
- W2003059629 hasAuthorship W2003059629A5051880364 @default.
- W2003059629 hasAuthorship W2003059629A5061746912 @default.
- W2003059629 hasAuthorship W2003059629A5063066870 @default.
- W2003059629 hasAuthorship W2003059629A5079668307 @default.
- W2003059629 hasConcept C108583219 @default.
- W2003059629 hasConcept C127313418 @default.
- W2003059629 hasConcept C138885662 @default.
- W2003059629 hasConcept C153180895 @default.
- W2003059629 hasConcept C154945302 @default.
- W2003059629 hasConcept C2776151529 @default.
- W2003059629 hasConcept C2776401178 @default.
- W2003059629 hasConcept C2780150128 @default.
- W2003059629 hasConcept C31972630 @default.
- W2003059629 hasConcept C41008148 @default.
- W2003059629 hasConcept C41895202 @default.
- W2003059629 hasConcept C50644808 @default.
- W2003059629 hasConcept C52622490 @default.
- W2003059629 hasConcept C62649853 @default.
- W2003059629 hasConcept C87360688 @default.
- W2003059629 hasConceptScore W2003059629C108583219 @default.
- W2003059629 hasConceptScore W2003059629C127313418 @default.
- W2003059629 hasConceptScore W2003059629C138885662 @default.
- W2003059629 hasConceptScore W2003059629C153180895 @default.
- W2003059629 hasConceptScore W2003059629C154945302 @default.
- W2003059629 hasConceptScore W2003059629C2776151529 @default.
- W2003059629 hasConceptScore W2003059629C2776401178 @default.
- W2003059629 hasConceptScore W2003059629C2780150128 @default.
- W2003059629 hasConceptScore W2003059629C31972630 @default.
- W2003059629 hasConceptScore W2003059629C41008148 @default.
- W2003059629 hasConceptScore W2003059629C41895202 @default.
- W2003059629 hasConceptScore W2003059629C50644808 @default.
- W2003059629 hasConceptScore W2003059629C52622490 @default.
- W2003059629 hasConceptScore W2003059629C62649853 @default.
- W2003059629 hasConceptScore W2003059629C87360688 @default.
- W2003059629 hasFunder F4320321001 @default.
- W2003059629 hasIssue "3" @default.
- W2003059629 hasLocation W20030596291 @default.
- W2003059629 hasOpenAccess W2003059629 @default.
- W2003059629 hasPrimaryLocation W20030596291 @default.
- W2003059629 hasRelatedWork W137416770 @default.
- W2003059629 hasRelatedWork W1964120219 @default.