Matches in SemOpenAlex for { <https://semopenalex.org/work/W2003127535> ?p ?o ?g. }
- W2003127535 abstract "We consider a linear regression problem in a high dimensional setting where the number of covariates p can be much larger than the sample size n. In such a situation, one often assumes sparsity of the regression vector, i.e., the regression vector contains many zero components. We propose a Lasso-type estimator β̂Quad (where ‘Quad’ stands for quadratic) which is based on two penalty terms. The first one is the ℓ1 norm of the regression coefficients used to exploit the sparsity of the regression as done by the Lasso estimator, whereas the second is a quadratic penalty term introduced to capture some additional information on the setting of the problem. We detail two special cases: the Elastic-Net β̂EN introduced in [42], which deals with sparse problems where correlations between variables may exist; and the Smooth-Lasso β̂SL, which responds to sparse problems where successive regression coefficients are known to vary slowly (in some situations, this can also be interpreted in terms of correlations between successive variables). From a theoretical point of view, we establish variable selection consistency results and show that β̂Quad achieves a Sparsity Inequality, i.e., a bound in terms of the number of non-zero components of the ‘true’ regression vector. These results are provided under a weaker assumption on the Gram matrix than the one used by the Lasso. In some situations this guarantees a significant improvement over the Lasso. Furthermore, a simulation study is conducted and shows that the S-Lasso β̂SL performs better than known methods as the Lasso, the Elastic-Net β̂EN, and the Fused-Lasso (introduced in [30]) with respect to the estimation accuracy. This is especially the case when the regression vector is ‘smooth’, i.e., when the variations between successive coefficients of the unknown parameter of the regression are small. The study also reveals that the theoretical calibration of the tuning parameters and the one based on 10 fold cross validation imply two S-Lasso solutions with close performance." @default.
- W2003127535 created "2016-06-24" @default.
- W2003127535 creator A5022767826 @default.
- W2003127535 creator A5033661683 @default.
- W2003127535 date "2011-01-01" @default.
- W2003127535 modified "2023-10-03" @default.
- W2003127535 title "The Smooth-Lasso and other ℓ1+ℓ2-penalized methods" @default.
- W2003127535 cites W1509060282 @default.
- W2003127535 cites W2020925091 @default.
- W2003127535 cites W2036555572 @default.
- W2003127535 cites W2039530176 @default.
- W2003127535 cites W2057682568 @default.
- W2003127535 cites W2063978378 @default.
- W2003127535 cites W2074682976 @default.
- W2003127535 cites W2075490785 @default.
- W2003127535 cites W2082213488 @default.
- W2003127535 cites W2089700840 @default.
- W2003127535 cites W2092058109 @default.
- W2003127535 cites W2093291778 @default.
- W2003127535 cites W2106398669 @default.
- W2003127535 cites W2116581043 @default.
- W2003127535 cites W2122825543 @default.
- W2003127535 cites W2135046866 @default.
- W2003127535 cites W2138019504 @default.
- W2003127535 cites W2140514146 @default.
- W2003127535 cites W2141613549 @default.
- W2003127535 cites W2159700154 @default.
- W2003127535 cites W3098834468 @default.
- W2003127535 cites W3099719085 @default.
- W2003127535 cites W3100041486 @default.
- W2003127535 cites W3100190044 @default.
- W2003127535 cites W3101040439 @default.
- W2003127535 cites W3105629641 @default.
- W2003127535 cites W3106224380 @default.
- W2003127535 cites W3106266785 @default.
- W2003127535 cites W3125188740 @default.
- W2003127535 cites W4229873072 @default.
- W2003127535 cites W4299683717 @default.
- W2003127535 doi "https://doi.org/10.1214/11-ejs638" @default.
- W2003127535 hasPublicationYear "2011" @default.
- W2003127535 type Work @default.
- W2003127535 sameAs 2003127535 @default.
- W2003127535 citedByCount "74" @default.
- W2003127535 countsByYear W20031275352012 @default.
- W2003127535 countsByYear W20031275352013 @default.
- W2003127535 countsByYear W20031275352014 @default.
- W2003127535 countsByYear W20031275352015 @default.
- W2003127535 countsByYear W20031275352016 @default.
- W2003127535 countsByYear W20031275352017 @default.
- W2003127535 countsByYear W20031275352018 @default.
- W2003127535 countsByYear W20031275352019 @default.
- W2003127535 countsByYear W20031275352020 @default.
- W2003127535 countsByYear W20031275352021 @default.
- W2003127535 countsByYear W20031275352022 @default.
- W2003127535 countsByYear W20031275352023 @default.
- W2003127535 crossrefType "journal-article" @default.
- W2003127535 hasAuthorship W2003127535A5022767826 @default.
- W2003127535 hasAuthorship W2003127535A5033661683 @default.
- W2003127535 hasBestOaLocation W20031275351 @default.
- W2003127535 hasConcept C105795698 @default.
- W2003127535 hasConcept C11413529 @default.
- W2003127535 hasConcept C118615104 @default.
- W2003127535 hasConcept C119043178 @default.
- W2003127535 hasConcept C126255220 @default.
- W2003127535 hasConcept C129844170 @default.
- W2003127535 hasConcept C136764020 @default.
- W2003127535 hasConcept C148483581 @default.
- W2003127535 hasConcept C152877465 @default.
- W2003127535 hasConcept C154945302 @default.
- W2003127535 hasConcept C185429906 @default.
- W2003127535 hasConcept C203868755 @default.
- W2003127535 hasConcept C2524010 @default.
- W2003127535 hasConcept C2776436953 @default.
- W2003127535 hasConcept C28826006 @default.
- W2003127535 hasConcept C33923547 @default.
- W2003127535 hasConcept C37616216 @default.
- W2003127535 hasConcept C41008148 @default.
- W2003127535 hasConcept C48921125 @default.
- W2003127535 hasConcept C83546350 @default.
- W2003127535 hasConceptScore W2003127535C105795698 @default.
- W2003127535 hasConceptScore W2003127535C11413529 @default.
- W2003127535 hasConceptScore W2003127535C118615104 @default.
- W2003127535 hasConceptScore W2003127535C119043178 @default.
- W2003127535 hasConceptScore W2003127535C126255220 @default.
- W2003127535 hasConceptScore W2003127535C129844170 @default.
- W2003127535 hasConceptScore W2003127535C136764020 @default.
- W2003127535 hasConceptScore W2003127535C148483581 @default.
- W2003127535 hasConceptScore W2003127535C152877465 @default.
- W2003127535 hasConceptScore W2003127535C154945302 @default.
- W2003127535 hasConceptScore W2003127535C185429906 @default.
- W2003127535 hasConceptScore W2003127535C203868755 @default.
- W2003127535 hasConceptScore W2003127535C2524010 @default.
- W2003127535 hasConceptScore W2003127535C2776436953 @default.
- W2003127535 hasConceptScore W2003127535C28826006 @default.
- W2003127535 hasConceptScore W2003127535C33923547 @default.
- W2003127535 hasConceptScore W2003127535C37616216 @default.
- W2003127535 hasConceptScore W2003127535C41008148 @default.
- W2003127535 hasConceptScore W2003127535C48921125 @default.
- W2003127535 hasConceptScore W2003127535C83546350 @default.
- W2003127535 hasIssue "none" @default.