Matches in SemOpenAlex for { <https://semopenalex.org/work/W2003167051> ?p ?o ?g. }
- W2003167051 endingPage "1412" @default.
- W2003167051 startingPage "1365" @default.
- W2003167051 abstract "Benthic incubation chambers and sediment pore water profiles were used to study early diagenesis of organic matter in equatorial Pacific sediments. Replicate measurements with a flux chamber covering 720 cm2 indicated that the spatial variability of oxygen, TCO2, alkalinity, nitrate and silica fluxes at a single station did not exceed 10–35%. In contrast, diffusive fluxes of oxygen from replicate cores covering 70 cm2 at a single station often showed greater variation. In January 1992, benthic oxygen consumption was fairly constant along the equator from 103°W to 140°W at 0.6-0.8 mmol m−2 day−1. In November 1992, consumption was roughly symmetrical across the equator along 140°W, with rates of 0.6-0.8 mmol m−2 day−1 between 2°S and 2°N, declining to rates of 0.1-0.2 mmol m−2 day−1 at 12°S and 9°N. Pore water oxygen profiles were fit with a reaction-diffusion model equation to evaluate reaction kinetics. Most profiles were adequately fit with a model that assumed reaction rates declined exponentially with depth, but at low latitudes better fits often were obtained with a model that assumed decomposing organic matter has two labile components and that each decays with first-order kinetics and decreases exponentially with depth. Results of both fits indicate that at least 70% of the organic matter degradation occurs within the upper 1–2 cm of sediment. At the low-latitude stations fit with the two-component model, 70–90% of the flux is attributable to the more labile component which has an average 1/e penetration depth of 0.4 ± 0.1 cm. The more refractory component at these stations has a penetration depth of 4.4 ± 0.4 cm. From estimates of sediment mixing rates, the mean life of all degrading organic matter at the higher latitude stations is 4–55 years, while at the stations fit with the two-component model, the lifetime of the more labile fraction is weeks to months, and the lifetime of the less labile component is 40–300 years. A third carbon fraction exists at all stations that is far more refractory. The O2:CO2 stoichiometry of remineralization is −1.45 ± 0.17, and the C:N ratio is 8 ± 1. Both ratios are in good agreement with those observed from sediment trap and hydrographic studies in the water column, and suggest that degrading organic matter has about 70% of its carbon in -CH2O-groups and 30% in -CH2-groups. The C:P atom ratios for benthic remineralization differ by a factor of 3 for the two cruises, showing substantial temporal variability and de-coupling from carbon, although the mean for the two cruises (170 ± 85) is not significantly different than remineralization ratios observed in the water column. The aerally-integrated benthic respiration rate for the equatorial Pacific upwelling region is at least 25% of the integrated respiration rate for the continental margin (slope + rise) areas of the Pacific, emphasizing the importance of the equatorial Pacific sediments as a major site of benthic carbon recycling. Benthic carbon remineralization rates determined during the past decade near the equator and 140°W have varied by a factor of 2, which is not surprising given the short lifetime of the majority of the carbon degrading. The temporal patterns of carbon remineralization rates resemble those of sea-surface temperature, suggesting that benthic carbon oxidation at this site may reflect water column productivity over relatively short timescales." @default.
- W2003167051 created "2016-06-24" @default.
- W2003167051 creator A5023442531 @default.
- W2003167051 creator A5027085913 @default.
- W2003167051 creator A5059708226 @default.
- W2003167051 creator A5067312975 @default.
- W2003167051 creator A5077888147 @default.
- W2003167051 date "1996-01-01" @default.
- W2003167051 modified "2023-09-26" @default.
- W2003167051 title "Early diagenesis of organic material in equatorial Pacific sediments: stpichiometry and kinetics" @default.
- W2003167051 cites W1519336210 @default.
- W2003167051 cites W1965468773 @default.
- W2003167051 cites W1966569540 @default.
- W2003167051 cites W1966776478 @default.
- W2003167051 cites W1968605816 @default.
- W2003167051 cites W1969431827 @default.
- W2003167051 cites W1979340125 @default.
- W2003167051 cites W1979758488 @default.
- W2003167051 cites W1985328947 @default.
- W2003167051 cites W1986081344 @default.
- W2003167051 cites W1999556547 @default.
- W2003167051 cites W2002974466 @default.
- W2003167051 cites W2003295260 @default.
- W2003167051 cites W2007835197 @default.
- W2003167051 cites W2007919618 @default.
- W2003167051 cites W2009730248 @default.
- W2003167051 cites W2013278565 @default.
- W2003167051 cites W2014661680 @default.
- W2003167051 cites W2014691272 @default.
- W2003167051 cites W2021893225 @default.
- W2003167051 cites W2021947786 @default.
- W2003167051 cites W2023416653 @default.
- W2003167051 cites W2028336103 @default.
- W2003167051 cites W2030098873 @default.
- W2003167051 cites W2031714936 @default.
- W2003167051 cites W2032406727 @default.
- W2003167051 cites W2032657576 @default.
- W2003167051 cites W2038660069 @default.
- W2003167051 cites W2038799028 @default.
- W2003167051 cites W2042125781 @default.
- W2003167051 cites W2043668123 @default.
- W2003167051 cites W2044233272 @default.
- W2003167051 cites W2050073845 @default.
- W2003167051 cites W2055418341 @default.
- W2003167051 cites W2057566920 @default.
- W2003167051 cites W2058513187 @default.
- W2003167051 cites W2063656463 @default.
- W2003167051 cites W2063897302 @default.
- W2003167051 cites W2063905977 @default.
- W2003167051 cites W2064097367 @default.
- W2003167051 cites W2064514607 @default.
- W2003167051 cites W2068489309 @default.
- W2003167051 cites W2073406187 @default.
- W2003167051 cites W2078522562 @default.
- W2003167051 cites W2078956978 @default.
- W2003167051 cites W2080248593 @default.
- W2003167051 cites W2080357336 @default.
- W2003167051 cites W2087096994 @default.
- W2003167051 cites W2089672151 @default.
- W2003167051 cites W2095861384 @default.
- W2003167051 cites W2098190125 @default.
- W2003167051 cites W2124640583 @default.
- W2003167051 cites W2127191147 @default.
- W2003167051 cites W2158167966 @default.
- W2003167051 cites W2162422921 @default.
- W2003167051 cites W2169605638 @default.
- W2003167051 cites W2171973630 @default.
- W2003167051 cites W2327718822 @default.
- W2003167051 cites W2332713089 @default.
- W2003167051 cites W4229487861 @default.
- W2003167051 cites W4293076902 @default.
- W2003167051 doi "https://doi.org/10.1016/0967-0645(96)00027-6" @default.
- W2003167051 hasPublicationYear "1996" @default.
- W2003167051 type Work @default.
- W2003167051 sameAs 2003167051 @default.
- W2003167051 citedByCount "136" @default.
- W2003167051 countsByYear W20031670512012 @default.
- W2003167051 countsByYear W20031670512013 @default.
- W2003167051 countsByYear W20031670512014 @default.
- W2003167051 countsByYear W20031670512015 @default.
- W2003167051 countsByYear W20031670512016 @default.
- W2003167051 countsByYear W20031670512017 @default.
- W2003167051 countsByYear W20031670512018 @default.
- W2003167051 countsByYear W20031670512019 @default.
- W2003167051 countsByYear W20031670512020 @default.
- W2003167051 countsByYear W20031670512021 @default.
- W2003167051 countsByYear W20031670512022 @default.
- W2003167051 countsByYear W20031670512023 @default.
- W2003167051 crossrefType "journal-article" @default.
- W2003167051 hasAuthorship W2003167051A5023442531 @default.
- W2003167051 hasAuthorship W2003167051A5027085913 @default.
- W2003167051 hasAuthorship W2003167051A5059708226 @default.
- W2003167051 hasAuthorship W2003167051A5067312975 @default.
- W2003167051 hasAuthorship W2003167051A5077888147 @default.
- W2003167051 hasConcept C111368507 @default.
- W2003167051 hasConcept C114793014 @default.
- W2003167051 hasConcept C121332964 @default.
- W2003167051 hasConcept C122523270 @default.