Matches in SemOpenAlex for { <https://semopenalex.org/work/W2003172973> ?p ?o ?g. }
- W2003172973 endingPage "472" @default.
- W2003172973 startingPage "465" @default.
- W2003172973 abstract "This paper presents a systematic methodology based on the application of artificial neural networks for sequencing batch reactor (SBR) identification. The SBR is a fill-and-draw biological wastewater technology, which is specially suited for nutrient removal. The proposed approach makes optimal use of the available data during the training stage and it is aimed at achieving high generalization ability. For this purpose, a wide range of experimental conditions, including different solids retention times and influent characteristics, has been used. The methodology is successfully applied to develop a soft-sensor for monitoring a laboratory-scale SBR operated for enhanced biological phosphorus removal. The main interest is the utilization of the soft-sensor to determine the optimal length of the SBR stages within each cycle according to the actual process requirements. Note that SBRs are normally operated with constant predefined duration of the stages, thus, resulting in low efficient operation. Data obtained from the on-line electronic sensors installed in the SBR and from the control quality laboratory analysis have been used to develop the optimal architecture of two different ANNs. The ANNs were trained for on-line prediction of phosphorus (P) concentration in the SBR. One ANN uses only inexpensive and reliable on-line measurements as input data and the other one also includes as input the previous P measurement (lag −1), thus considering the quality variable dynamics. The latter ANN can be used to overcome the delay introduced by the measurement procedure of phosphorus concentration. The results have shown that the developed models can be used as efficient and cost-effective predictive tools for the system analysed, since they accurately reproduced the phosphorus behaviour in the SBR." @default.
- W2003172973 created "2016-06-24" @default.
- W2003172973 creator A5011797764 @default.
- W2003172973 creator A5013435812 @default.
- W2003172973 creator A5014563867 @default.
- W2003172973 creator A5059061439 @default.
- W2003172973 creator A5059506813 @default.
- W2003172973 date "2009-02-01" @default.
- W2003172973 modified "2023-10-18" @default.
- W2003172973 title "A methodology for sequencing batch reactor identification with artificial neural networks: A case study" @default.
- W2003172973 cites W1536588897 @default.
- W2003172973 cites W1571134119 @default.
- W2003172973 cites W1969231771 @default.
- W2003172973 cites W1975532543 @default.
- W2003172973 cites W1988047145 @default.
- W2003172973 cites W2003972596 @default.
- W2003172973 cites W2033011442 @default.
- W2003172973 cites W2035701376 @default.
- W2003172973 cites W2041646568 @default.
- W2003172973 cites W2047391029 @default.
- W2003172973 cites W205427101 @default.
- W2003172973 cites W2067336855 @default.
- W2003172973 cites W2082037728 @default.
- W2003172973 cites W2082293927 @default.
- W2003172973 cites W2094422801 @default.
- W2003172973 cites W2122642490 @default.
- W2003172973 cites W2132197751 @default.
- W2003172973 cites W2137983211 @default.
- W2003172973 cites W244482150 @default.
- W2003172973 cites W4252531271 @default.
- W2003172973 doi "https://doi.org/10.1016/j.compchemeng.2008.10.018" @default.
- W2003172973 hasPublicationYear "2009" @default.
- W2003172973 type Work @default.
- W2003172973 sameAs 2003172973 @default.
- W2003172973 citedByCount "40" @default.
- W2003172973 countsByYear W20031729732012 @default.
- W2003172973 countsByYear W20031729732013 @default.
- W2003172973 countsByYear W20031729732014 @default.
- W2003172973 countsByYear W20031729732015 @default.
- W2003172973 countsByYear W20031729732016 @default.
- W2003172973 countsByYear W20031729732017 @default.
- W2003172973 countsByYear W20031729732018 @default.
- W2003172973 countsByYear W20031729732019 @default.
- W2003172973 countsByYear W20031729732020 @default.
- W2003172973 countsByYear W20031729732021 @default.
- W2003172973 countsByYear W20031729732022 @default.
- W2003172973 countsByYear W20031729732023 @default.
- W2003172973 crossrefType "journal-article" @default.
- W2003172973 hasAuthorship W2003172973A5011797764 @default.
- W2003172973 hasAuthorship W2003172973A5013435812 @default.
- W2003172973 hasAuthorship W2003172973A5014563867 @default.
- W2003172973 hasAuthorship W2003172973A5059061439 @default.
- W2003172973 hasAuthorship W2003172973A5059506813 @default.
- W2003172973 hasConcept C111919701 @default.
- W2003172973 hasConcept C116834253 @default.
- W2003172973 hasConcept C127413603 @default.
- W2003172973 hasConcept C146978453 @default.
- W2003172973 hasConcept C154945302 @default.
- W2003172973 hasConcept C204323151 @default.
- W2003172973 hasConcept C21880701 @default.
- W2003172973 hasConcept C2780355613 @default.
- W2003172973 hasConcept C41008148 @default.
- W2003172973 hasConcept C50644808 @default.
- W2003172973 hasConcept C59822182 @default.
- W2003172973 hasConcept C86803240 @default.
- W2003172973 hasConcept C87717796 @default.
- W2003172973 hasConcept C94061648 @default.
- W2003172973 hasConcept C98045186 @default.
- W2003172973 hasConceptScore W2003172973C111919701 @default.
- W2003172973 hasConceptScore W2003172973C116834253 @default.
- W2003172973 hasConceptScore W2003172973C127413603 @default.
- W2003172973 hasConceptScore W2003172973C146978453 @default.
- W2003172973 hasConceptScore W2003172973C154945302 @default.
- W2003172973 hasConceptScore W2003172973C204323151 @default.
- W2003172973 hasConceptScore W2003172973C21880701 @default.
- W2003172973 hasConceptScore W2003172973C2780355613 @default.
- W2003172973 hasConceptScore W2003172973C41008148 @default.
- W2003172973 hasConceptScore W2003172973C50644808 @default.
- W2003172973 hasConceptScore W2003172973C59822182 @default.
- W2003172973 hasConceptScore W2003172973C86803240 @default.
- W2003172973 hasConceptScore W2003172973C87717796 @default.
- W2003172973 hasConceptScore W2003172973C94061648 @default.
- W2003172973 hasConceptScore W2003172973C98045186 @default.
- W2003172973 hasIssue "2" @default.
- W2003172973 hasLocation W20031729731 @default.
- W2003172973 hasOpenAccess W2003172973 @default.
- W2003172973 hasPrimaryLocation W20031729731 @default.
- W2003172973 hasRelatedWork W156629876 @default.
- W2003172973 hasRelatedWork W2362972152 @default.
- W2003172973 hasRelatedWork W2372387335 @default.
- W2003172973 hasRelatedWork W2372608198 @default.
- W2003172973 hasRelatedWork W2374506468 @default.
- W2003172973 hasRelatedWork W2386387936 @default.
- W2003172973 hasRelatedWork W2899084033 @default.
- W2003172973 hasRelatedWork W4248817909 @default.
- W2003172973 hasRelatedWork W4367048510 @default.
- W2003172973 hasRelatedWork W2012842278 @default.
- W2003172973 hasVolume "33" @default.