Matches in SemOpenAlex for { <https://semopenalex.org/work/W2003173663> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2003173663 endingPage "284" @default.
- W2003173663 startingPage "269" @default.
- W2003173663 abstract "Asymptotic approximations show that the lowest modes of the prolate spheroidal wave equation are concentrated with an O(1/c) length scale where c is the “bandwidth” parameter of the prolate differential equation. Accurate computation of the ground state eigenvalue by the long-known Legendre–Galerkin method requires roughly 3.8c Legendre polynomials. Some studies have therefore applied a grid with 20,000 points in conjunction with high order finite differences to achieve c=107. Here, we show that by adaptively applying either Hermite functions or Gaussian radial basis functions (RBFs), it is never necessary to use more than eighty degrees of freedom to calculate the lowest dozen eigenvalues of each symmetry class. For small c, the eigenmodes are not confined to a small portion of the domain θ∈[−π/2,π/2] in latitude, but are global. We show that by periodizing the basis functions via imbricate series, it is possible to apply Hermite and RBFs even in the limit c→0. (The Legendre method is probably a little more efficient in this limit since the prolate functions tend to Legendre polynomials in this limit.) A “sideband truncation” restricts the discretization to a small block taken from the large Hermite–Galerkin matrix. We show that sideband truncation with blocks as small as 5×5 is a very efficient way to compute high order modes. In an appendix, we prove a rigorous convergence theorem for the periodized Hermite expansion." @default.
- W2003173663 created "2016-06-24" @default.
- W2003173663 creator A5004947752 @default.
- W2003173663 creator A5025583043 @default.
- W2003173663 creator A5074056648 @default.
- W2003173663 date "2015-01-01" @default.
- W2003173663 modified "2023-10-13" @default.
- W2003173663 title "Adaptive radial basis function and Hermite function pseudospectral methods for computing eigenvalues of the prolate spheroidal wave equation for very large bandwidth parameter" @default.
- W2003173663 cites W1499478625 @default.
- W2003173663 cites W1972649231 @default.
- W2003173663 cites W1973663906 @default.
- W2003173663 cites W1974756925 @default.
- W2003173663 cites W1979962982 @default.
- W2003173663 cites W2021953266 @default.
- W2003173663 cites W2023583513 @default.
- W2003173663 cites W2028619757 @default.
- W2003173663 cites W2042468301 @default.
- W2003173663 cites W2045467508 @default.
- W2003173663 cites W2047861465 @default.
- W2003173663 cites W2051478763 @default.
- W2003173663 cites W2058338453 @default.
- W2003173663 cites W2072111195 @default.
- W2003173663 cites W2075283530 @default.
- W2003173663 cites W2076100298 @default.
- W2003173663 cites W2080400963 @default.
- W2003173663 cites W2166245316 @default.
- W2003173663 cites W2963645054 @default.
- W2003173663 cites W940757057 @default.
- W2003173663 doi "https://doi.org/10.1016/j.jcp.2014.10.024" @default.
- W2003173663 hasPublicationYear "2015" @default.
- W2003173663 type Work @default.
- W2003173663 sameAs 2003173663 @default.
- W2003173663 citedByCount "6" @default.
- W2003173663 countsByYear W20031736632014 @default.
- W2003173663 countsByYear W20031736632016 @default.
- W2003173663 countsByYear W20031736632017 @default.
- W2003173663 countsByYear W20031736632020 @default.
- W2003173663 countsByYear W20031736632023 @default.
- W2003173663 crossrefType "journal-article" @default.
- W2003173663 hasAuthorship W2003173663A5004947752 @default.
- W2003173663 hasAuthorship W2003173663A5025583043 @default.
- W2003173663 hasAuthorship W2003173663A5074056648 @default.
- W2003173663 hasConcept C104942944 @default.
- W2003173663 hasConcept C111458787 @default.
- W2003173663 hasConcept C121332964 @default.
- W2003173663 hasConcept C134306372 @default.
- W2003173663 hasConcept C135628077 @default.
- W2003173663 hasConcept C158693339 @default.
- W2003173663 hasConcept C186899397 @default.
- W2003173663 hasConcept C201362023 @default.
- W2003173663 hasConcept C33923547 @default.
- W2003173663 hasConcept C5917680 @default.
- W2003173663 hasConcept C62520636 @default.
- W2003173663 hasConcept C97355855 @default.
- W2003173663 hasConceptScore W2003173663C104942944 @default.
- W2003173663 hasConceptScore W2003173663C111458787 @default.
- W2003173663 hasConceptScore W2003173663C121332964 @default.
- W2003173663 hasConceptScore W2003173663C134306372 @default.
- W2003173663 hasConceptScore W2003173663C135628077 @default.
- W2003173663 hasConceptScore W2003173663C158693339 @default.
- W2003173663 hasConceptScore W2003173663C186899397 @default.
- W2003173663 hasConceptScore W2003173663C201362023 @default.
- W2003173663 hasConceptScore W2003173663C33923547 @default.
- W2003173663 hasConceptScore W2003173663C5917680 @default.
- W2003173663 hasConceptScore W2003173663C62520636 @default.
- W2003173663 hasConceptScore W2003173663C97355855 @default.
- W2003173663 hasFunder F4320306076 @default.
- W2003173663 hasFunder F4320321001 @default.
- W2003173663 hasLocation W20031736631 @default.
- W2003173663 hasOpenAccess W2003173663 @default.
- W2003173663 hasPrimaryLocation W20031736631 @default.
- W2003173663 hasRelatedWork W1987918165 @default.
- W2003173663 hasRelatedWork W2082487388 @default.
- W2003173663 hasRelatedWork W2377122930 @default.
- W2003173663 hasRelatedWork W2606595022 @default.
- W2003173663 hasRelatedWork W2755347715 @default.
- W2003173663 hasRelatedWork W2800265102 @default.
- W2003173663 hasRelatedWork W2807467029 @default.
- W2003173663 hasRelatedWork W2910360512 @default.
- W2003173663 hasRelatedWork W3201923091 @default.
- W2003173663 hasRelatedWork W4237776256 @default.
- W2003173663 hasVolume "281" @default.
- W2003173663 isParatext "false" @default.
- W2003173663 isRetracted "false" @default.
- W2003173663 magId "2003173663" @default.
- W2003173663 workType "article" @default.