Matches in SemOpenAlex for { <https://semopenalex.org/work/W2003182005> ?p ?o ?g. }
- W2003182005 endingPage "907" @default.
- W2003182005 startingPage "895" @default.
- W2003182005 abstract "Hyperspectral remote sensing produces large volumes of data, quite often requiring hundreds of megabytes togigabytes of memory storage for a small geographical area for one-time data collection. Although the high spectral resolutionof hyperspectral data is quite useful for capturing and discriminating subtle differences in geospatial characteristics of thetarget, it contains redundant information at the band level. The objective of this study was to identify those bands that containthe most information needed for characterizing a specific geospatial feature with minimal redundancy. Band selection is performedwith both unsupervised and supervised approaches. Five methods (three unsupervised and two supervised) are proposedand compared to identify hyperspectral image bands to characterize soil electrical conductivity and canopy coveragein agricultural fields. The unsupervised approach includes information entropy measure and first and second derivativesalong the spectral axis. The supervised approach selects hyperspectral bands based on supplemental ground truth data usingprincipal component analysis (PCA) and artificial neural network (ANN) based models. Each hyperspectral image band wasranked using all five methods. Twenty best bands were selected by each method with the focus on soil and plant canopy characterizationin precision agriculture. The results showed that each of these methods may be appropriate for different applications.The entropy measure and PCA were quite useful for selecting bands with the most information content, while derivativemethods could be used for identifying absorption features. ANN measure was the most useful in selecting bands specific toa target characteristic with minimum information redundancy. The results also indicated that a combination of wavebandswith different bandwidths will allow use of fewer than 20 bands used in this study to represent the information contained inthe top 20 bands, thus reducing image data dimensionality and volume considerably." @default.
- W2003182005 created "2016-06-24" @default.
- W2003182005 creator A5009017682 @default.
- W2003182005 creator A5015678162 @default.
- W2003182005 creator A5039565883 @default.
- W2003182005 creator A5089969477 @default.
- W2003182005 date "2004-01-01" @default.
- W2003182005 modified "2023-09-27" @default.
- W2003182005 title "HYPERSPECTRAL IMAGE DATA MINING FOR BAND SELECTION IN AGRICULTURAL APPLICATIONS" @default.
- W2003182005 cites W120340242 @default.
- W2003182005 cites W1511732006 @default.
- W2003182005 cites W1578368825 @default.
- W2003182005 cites W1639032689 @default.
- W2003182005 cites W1971977120 @default.
- W2003182005 cites W1988690584 @default.
- W2003182005 cites W1992196058 @default.
- W2003182005 cites W1992883747 @default.
- W2003182005 cites W2017859040 @default.
- W2003182005 cites W2025871082 @default.
- W2003182005 cites W2062901482 @default.
- W2003182005 cites W2075021962 @default.
- W2003182005 cites W2117741752 @default.
- W2003182005 cites W2118217749 @default.
- W2003182005 cites W2136625467 @default.
- W2003182005 cites W2144199465 @default.
- W2003182005 cites W2476102179 @default.
- W2003182005 cites W2478569762 @default.
- W2003182005 cites W2904250082 @default.
- W2003182005 cites W3013914999 @default.
- W2003182005 doi "https://doi.org/10.13031/2013.16087" @default.
- W2003182005 hasPublicationYear "2004" @default.
- W2003182005 type Work @default.
- W2003182005 sameAs 2003182005 @default.
- W2003182005 citedByCount "76" @default.
- W2003182005 countsByYear W20031820052012 @default.
- W2003182005 countsByYear W20031820052013 @default.
- W2003182005 countsByYear W20031820052014 @default.
- W2003182005 countsByYear W20031820052015 @default.
- W2003182005 countsByYear W20031820052016 @default.
- W2003182005 countsByYear W20031820052017 @default.
- W2003182005 countsByYear W20031820052018 @default.
- W2003182005 countsByYear W20031820052019 @default.
- W2003182005 countsByYear W20031820052020 @default.
- W2003182005 countsByYear W20031820052021 @default.
- W2003182005 countsByYear W20031820052022 @default.
- W2003182005 countsByYear W20031820052023 @default.
- W2003182005 crossrefType "journal-article" @default.
- W2003182005 hasAuthorship W2003182005A5009017682 @default.
- W2003182005 hasAuthorship W2003182005A5015678162 @default.
- W2003182005 hasAuthorship W2003182005A5039565883 @default.
- W2003182005 hasAuthorship W2003182005A5089969477 @default.
- W2003182005 hasBestOaLocation W20031820052 @default.
- W2003182005 hasConcept C106301342 @default.
- W2003182005 hasConcept C111919701 @default.
- W2003182005 hasConcept C114700698 @default.
- W2003182005 hasConcept C121332964 @default.
- W2003182005 hasConcept C124101348 @default.
- W2003182005 hasConcept C146849305 @default.
- W2003182005 hasConcept C148483581 @default.
- W2003182005 hasConcept C152124472 @default.
- W2003182005 hasConcept C153180895 @default.
- W2003182005 hasConcept C154945302 @default.
- W2003182005 hasConcept C159078339 @default.
- W2003182005 hasConcept C205649164 @default.
- W2003182005 hasConcept C41008148 @default.
- W2003182005 hasConcept C62520636 @default.
- W2003182005 hasConcept C62649853 @default.
- W2003182005 hasConcept C9770341 @default.
- W2003182005 hasConceptScore W2003182005C106301342 @default.
- W2003182005 hasConceptScore W2003182005C111919701 @default.
- W2003182005 hasConceptScore W2003182005C114700698 @default.
- W2003182005 hasConceptScore W2003182005C121332964 @default.
- W2003182005 hasConceptScore W2003182005C124101348 @default.
- W2003182005 hasConceptScore W2003182005C146849305 @default.
- W2003182005 hasConceptScore W2003182005C148483581 @default.
- W2003182005 hasConceptScore W2003182005C152124472 @default.
- W2003182005 hasConceptScore W2003182005C153180895 @default.
- W2003182005 hasConceptScore W2003182005C154945302 @default.
- W2003182005 hasConceptScore W2003182005C159078339 @default.
- W2003182005 hasConceptScore W2003182005C205649164 @default.
- W2003182005 hasConceptScore W2003182005C41008148 @default.
- W2003182005 hasConceptScore W2003182005C62520636 @default.
- W2003182005 hasConceptScore W2003182005C62649853 @default.
- W2003182005 hasConceptScore W2003182005C9770341 @default.
- W2003182005 hasIssue "3" @default.
- W2003182005 hasLocation W20031820051 @default.
- W2003182005 hasLocation W20031820052 @default.
- W2003182005 hasOpenAccess W2003182005 @default.
- W2003182005 hasPrimaryLocation W20031820051 @default.
- W2003182005 hasRelatedWork W1490523270 @default.
- W2003182005 hasRelatedWork W1505313971 @default.
- W2003182005 hasRelatedWork W2028628118 @default.
- W2003182005 hasRelatedWork W2085994657 @default.
- W2003182005 hasRelatedWork W2279827949 @default.
- W2003182005 hasRelatedWork W2548280432 @default.
- W2003182005 hasRelatedWork W2782454659 @default.
- W2003182005 hasRelatedWork W2802558446 @default.
- W2003182005 hasRelatedWork W2970415637 @default.