Matches in SemOpenAlex for { <https://semopenalex.org/work/W2003191279> ?p ?o ?g. }
- W2003191279 endingPage "1443" @default.
- W2003191279 startingPage "1421" @default.
- W2003191279 abstract "Abstract Correlation models are required in data assimilation to characterize the error structures of variables defined on a numerical grid. Previous studies have shown that the diffusion equation can provide a flexible and computationally efficient framework for representing grid‐point correlation functions for problems of large dimension such as those encountered in atmospheric or ocean variational data assimilation. In this article, an implicit formulation of the diffusion‐based correlation model is presented as an alternative to the traditional explicit formulation. The implicit formulation is analyzed in detail for the one‐dimensional (1D) problem and shown to be closely related to the first‐order recursive filter. Integrating a 1D implicit diffusion equation, with constant coefficient, over M steps is shown to be equivalent to convolving the initial condition with an M th order auto‐regressive (AR) function. Expressions for both the length‐scale of the AR function and the normalization factor required to generate unit‐amplitude (correlation) functions are given in terms of M and the diffusion coefficient. For a fixed length‐scale the Gaussian function, which is the only function that can be represented using an explicit formulation of the constant‐coefficient diffusion equation, is the limiting case as M → ∞ of the AR functions generated by the implicit diffusion equation. Generalizations of the diffusion model are discussed to allow for different shapes in the correlation function and spatial variations in the length‐scale. An important consequence of employing spatially varying length‐scales is that the normalization factors are no longer constant. Approximate expressions for the normalization factors are evaluated in terms of their effectiveness to provide viable alternatives to estimates produced using expensive algorithms such as randomization. Boundary conditions can distort the correlation functions near the boundaries and significantly degrade the accuracy of the analytical expressions for the normalization factors. These problems can be avoided through a straightforward extension of the diffusion model that makes the boundaries effectively transparent, although the solution comes at the expense of an extra application of the diffusion equation. Extensions of the method to construct two‐ and three‐dimensional correlation models are discussed. Copyright © 2010 Royal Meteorological Society" @default.
- W2003191279 created "2016-06-24" @default.
- W2003191279 creator A5051678355 @default.
- W2003191279 creator A5061853206 @default.
- W2003191279 date "2010-07-01" @default.
- W2003191279 modified "2023-10-18" @default.
- W2003191279 title "Representation of correlation functions in variational assimilation using an implicit diffusion operator" @default.
- W2003191279 cites W1485265639 @default.
- W2003191279 cites W1502180380 @default.
- W2003191279 cites W1512208174 @default.
- W2003191279 cites W1573860137 @default.
- W2003191279 cites W1965891294 @default.
- W2003191279 cites W1966764026 @default.
- W2003191279 cites W1968414728 @default.
- W2003191279 cites W1978601068 @default.
- W2003191279 cites W1978990678 @default.
- W2003191279 cites W1981476726 @default.
- W2003191279 cites W1982901957 @default.
- W2003191279 cites W1996844479 @default.
- W2003191279 cites W1997542937 @default.
- W2003191279 cites W2004483855 @default.
- W2003191279 cites W2004889365 @default.
- W2003191279 cites W2005934653 @default.
- W2003191279 cites W2008631090 @default.
- W2003191279 cites W2011987919 @default.
- W2003191279 cites W2015112542 @default.
- W2003191279 cites W2027156186 @default.
- W2003191279 cites W2030774493 @default.
- W2003191279 cites W2035331188 @default.
- W2003191279 cites W2035707289 @default.
- W2003191279 cites W2035933721 @default.
- W2003191279 cites W2036842360 @default.
- W2003191279 cites W2037416330 @default.
- W2003191279 cites W2041178793 @default.
- W2003191279 cites W2042624383 @default.
- W2003191279 cites W2049636874 @default.
- W2003191279 cites W2055106264 @default.
- W2003191279 cites W2056684301 @default.
- W2003191279 cites W2066455064 @default.
- W2003191279 cites W2068039447 @default.
- W2003191279 cites W2070193968 @default.
- W2003191279 cites W2078562614 @default.
- W2003191279 cites W2082993115 @default.
- W2003191279 cites W2091196667 @default.
- W2003191279 cites W2094623066 @default.
- W2003191279 cites W2094702386 @default.
- W2003191279 cites W2098930828 @default.
- W2003191279 cites W2111746282 @default.
- W2003191279 cites W2116629292 @default.
- W2003191279 cites W2135371567 @default.
- W2003191279 cites W2136178461 @default.
- W2003191279 cites W2139004160 @default.
- W2003191279 cites W2146798857 @default.
- W2003191279 cites W2152498685 @default.
- W2003191279 cites W2155141857 @default.
- W2003191279 cites W2163649185 @default.
- W2003191279 cites W2169460232 @default.
- W2003191279 cites W2169949971 @default.
- W2003191279 cites W2175400375 @default.
- W2003191279 cites W2179703249 @default.
- W2003191279 cites W2509665490 @default.
- W2003191279 cites W335376666 @default.
- W2003191279 cites W4239349259 @default.
- W2003191279 cites W4249145583 @default.
- W2003191279 cites W4252141316 @default.
- W2003191279 cites W55912154 @default.
- W2003191279 doi "https://doi.org/10.1002/qj.643" @default.
- W2003191279 hasPublicationYear "2010" @default.
- W2003191279 type Work @default.
- W2003191279 sameAs 2003191279 @default.
- W2003191279 citedByCount "75" @default.
- W2003191279 countsByYear W20031912792012 @default.
- W2003191279 countsByYear W20031912792013 @default.
- W2003191279 countsByYear W20031912792014 @default.
- W2003191279 countsByYear W20031912792015 @default.
- W2003191279 countsByYear W20031912792016 @default.
- W2003191279 countsByYear W20031912792017 @default.
- W2003191279 countsByYear W20031912792018 @default.
- W2003191279 countsByYear W20031912792019 @default.
- W2003191279 countsByYear W20031912792020 @default.
- W2003191279 countsByYear W20031912792021 @default.
- W2003191279 countsByYear W20031912792022 @default.
- W2003191279 countsByYear W20031912792023 @default.
- W2003191279 crossrefType "journal-article" @default.
- W2003191279 hasAuthorship W2003191279A5051678355 @default.
- W2003191279 hasAuthorship W2003191279A5061853206 @default.
- W2003191279 hasBestOaLocation W20031912791 @default.
- W2003191279 hasConcept C121332964 @default.
- W2003191279 hasConcept C121864883 @default.
- W2003191279 hasConcept C134306372 @default.
- W2003191279 hasConcept C136264566 @default.
- W2003191279 hasConcept C136886441 @default.
- W2003191279 hasConcept C14036430 @default.
- W2003191279 hasConcept C144024400 @default.
- W2003191279 hasConcept C153294291 @default.
- W2003191279 hasConcept C162324750 @default.
- W2003191279 hasConcept C163716315 @default.
- W2003191279 hasConcept C19165224 @default.