Matches in SemOpenAlex for { <https://semopenalex.org/work/W2003191689> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2003191689 endingPage "212" @default.
- W2003191689 startingPage "177" @default.
- W2003191689 abstract "We propose the application of iterative regularization for the development of ensemble methods for solving Bayesian inverse problems. In concrete, we construct (i) a variational iterative regularizing ensemble Levenberg-Marquardt method (IR-enLM) and (ii) a derivative-free iterative ensemble Kalman smoother (IR-ES). The aim of these methods is to provide a robust ensemble approximation of the Bayesian posterior. The proposed methods are based on fundamental ideas from iterative regularization methods that have been widely used for the solution of deterministic inverse problems (Katltenbacher et al. de Gruyter, Berlin 2008). In this work, we are interested in the application of the proposed ensemble methods for the solution of Bayesian inverse problems that arise in reservoir modeling applications. The proposed ensemble methods use key aspects of the regularizing Levenberg-Marquardt scheme developed by Hanke (Inverse Problems 13,79–95 1997) and that we recently applied for history matching in Iglesias (Comput. Geosci. 1–21 2013). Unlike most existing methods where the stopping criteria and regularization parameters are typically selected heuristically, in the proposed ensemble methods, the discrepancy principle is applied for (i) the selection of the regularization parameters and (ii) the early termination of the scheme. The discrepancy principle is key for the theory of iterative regularization, and the purpose of the present work is to apply this principle for the development of ensemble methods defined as iterative updates of solutions to linear ill-posed inverse problems. The regularizing and convergence properties of iterative regularization methods for deterministic inverse problems have long been established. However, the approximation properties of the proposed ensemble methods in the context of Bayesian inverse problems is an open problem. In the case where the forward operator is linear and the prior is Gaussian, we show that the tunable parameters of the proposed IR-enLM and IR-ES can be chosen so that the resulting schemes coincide with the standard randomized maximum likelihood (RML) and the ensemble smoother (ES), respectively. Therefore, the proposed methods sample from the posterior in the linear-Gaussian case. Similar to RML and ES methods, in the nonlinear case, one may not conclude that the proposed methods produce samples from the posterior. The present work provides a numerical investigation of the performance of the proposed ensemble methods at capturing the posterior. In particular, we aim at understanding the role of the tunable parameters that arise from the application of iterative regularization techniques. The numerical framework for our investigations consists of using a state-of-the art Markov chain Monte Carlo (MCMC) method for resolving the Bayesian posterior from synthetic experiments. The resolved posterior via MCMC then provides a gold standard against to which compare the proposed IR-enLM and IR-ES. Our numerical experiments show clear indication that the regularizing properties of the regularization methods applied for the computation of each ensemble have significant impact of the approximation properties of the proposed ensemble methods at capturing the Bayesian posterior. Furthermore, we provide a comparison of the proposed regularizing methods with respect to some unregularized methods that have been typically used in the literature. Our numerical experiments showcase the advantage of using iterative regularization for obtaining more robust and stable approximation of the posterior than unregularized methods." @default.
- W2003191689 created "2016-06-24" @default.
- W2003191689 creator A5007019491 @default.
- W2003191689 date "2014-12-09" @default.
- W2003191689 modified "2023-09-27" @default.
- W2003191689 title "Iterative regularization for ensemble data assimilation in reservoir models" @default.
- W2003191689 cites W1564864701 @default.
- W2003191689 cites W1975650588 @default.
- W2003191689 cites W1976584025 @default.
- W2003191689 cites W1992036378 @default.
- W2003191689 cites W2010024096 @default.
- W2003191689 cites W2011328014 @default.
- W2003191689 cites W2016875121 @default.
- W2003191689 cites W2017714771 @default.
- W2003191689 cites W2018353504 @default.
- W2003191689 cites W2023669272 @default.
- W2003191689 cites W2025130584 @default.
- W2003191689 cites W2046372107 @default.
- W2003191689 cites W2062505545 @default.
- W2003191689 cites W2072631273 @default.
- W2003191689 cites W2081182050 @default.
- W2003191689 cites W2102835525 @default.
- W2003191689 cites W2125643768 @default.
- W2003191689 cites W2135132779 @default.
- W2003191689 cites W2143534834 @default.
- W2003191689 cites W2149498546 @default.
- W2003191689 cites W2150166938 @default.
- W2003191689 cites W2152657433 @default.
- W2003191689 cites W2158987262 @default.
- W2003191689 cites W2170646430 @default.
- W2003191689 cites W2233795971 @default.
- W2003191689 cites W4231204432 @default.
- W2003191689 cites W593406250 @default.
- W2003191689 doi "https://doi.org/10.1007/s10596-014-9456-5" @default.
- W2003191689 hasPublicationYear "2014" @default.
- W2003191689 type Work @default.
- W2003191689 sameAs 2003191689 @default.
- W2003191689 citedByCount "60" @default.
- W2003191689 countsByYear W20031916892016 @default.
- W2003191689 countsByYear W20031916892017 @default.
- W2003191689 countsByYear W20031916892018 @default.
- W2003191689 countsByYear W20031916892019 @default.
- W2003191689 countsByYear W20031916892020 @default.
- W2003191689 countsByYear W20031916892021 @default.
- W2003191689 countsByYear W20031916892022 @default.
- W2003191689 countsByYear W20031916892023 @default.
- W2003191689 crossrefType "journal-article" @default.
- W2003191689 hasAuthorship W2003191689A5007019491 @default.
- W2003191689 hasBestOaLocation W20031916892 @default.
- W2003191689 hasConcept C121332964 @default.
- W2003191689 hasConcept C127313418 @default.
- W2003191689 hasConcept C138885662 @default.
- W2003191689 hasConcept C153294291 @default.
- W2003191689 hasConcept C154945302 @default.
- W2003191689 hasConcept C187320778 @default.
- W2003191689 hasConcept C24552861 @default.
- W2003191689 hasConcept C2776135515 @default.
- W2003191689 hasConcept C28826006 @default.
- W2003191689 hasConcept C33556824 @default.
- W2003191689 hasConcept C33923547 @default.
- W2003191689 hasConcept C41008148 @default.
- W2003191689 hasConcept C41895202 @default.
- W2003191689 hasConcept C75649859 @default.
- W2003191689 hasConceptScore W2003191689C121332964 @default.
- W2003191689 hasConceptScore W2003191689C127313418 @default.
- W2003191689 hasConceptScore W2003191689C138885662 @default.
- W2003191689 hasConceptScore W2003191689C153294291 @default.
- W2003191689 hasConceptScore W2003191689C154945302 @default.
- W2003191689 hasConceptScore W2003191689C187320778 @default.
- W2003191689 hasConceptScore W2003191689C24552861 @default.
- W2003191689 hasConceptScore W2003191689C2776135515 @default.
- W2003191689 hasConceptScore W2003191689C28826006 @default.
- W2003191689 hasConceptScore W2003191689C33556824 @default.
- W2003191689 hasConceptScore W2003191689C33923547 @default.
- W2003191689 hasConceptScore W2003191689C41008148 @default.
- W2003191689 hasConceptScore W2003191689C41895202 @default.
- W2003191689 hasConceptScore W2003191689C75649859 @default.
- W2003191689 hasIssue "1" @default.
- W2003191689 hasLocation W20031916891 @default.
- W2003191689 hasLocation W20031916892 @default.
- W2003191689 hasLocation W20031916893 @default.
- W2003191689 hasOpenAccess W2003191689 @default.
- W2003191689 hasPrimaryLocation W20031916891 @default.
- W2003191689 hasRelatedWork W1655244147 @default.
- W2003191689 hasRelatedWork W2003191689 @default.
- W2003191689 hasRelatedWork W2027711639 @default.
- W2003191689 hasRelatedWork W2071014867 @default.
- W2003191689 hasRelatedWork W2130015796 @default.
- W2003191689 hasRelatedWork W2390930233 @default.
- W2003191689 hasRelatedWork W2392545217 @default.
- W2003191689 hasRelatedWork W2460931660 @default.
- W2003191689 hasRelatedWork W258626943 @default.
- W2003191689 hasRelatedWork W607429014 @default.
- W2003191689 hasVolume "19" @default.
- W2003191689 isParatext "false" @default.
- W2003191689 isRetracted "false" @default.
- W2003191689 magId "2003191689" @default.
- W2003191689 workType "article" @default.