Matches in SemOpenAlex for { <https://semopenalex.org/work/W2003210850> ?p ?o ?g. }
- W2003210850 endingPage "1790" @default.
- W2003210850 startingPage "1790" @default.
- W2003210850 abstract "The potential of using partial least square based uninformative variable elimination algorithm (UVEPLS) on successive projections algorithm (SPA) for spectral multivariable selection was evaluated. A case study was done on the visible and shortwave-near infrared (Vis-SNIR) spectroscopy for the rapid and non-destructive determination of protein content in dried laver. Three calibration algorithms, namely multiple linear regression (MLR), partial least square regression (PLS) and least-square support vector machine (LS-SVM), were used for the model establishment based on the selected variables of SPA, UVEPLS and UVEPLS-SPA, respectively. A total of 175 samples were prepared for the calibration (n = 117) and prediction (n = 58) sets. The performances of different pretreatments were compared. Both linear calibration algorithms of MLR and PLS and non-linear calibration algorithms of LS-SVM with linear kernel and RBF kernel obtained similar results based on certain variable selection strategies of SPA, UVEPLS and UVEPLS-SPA. The average improvement percentage of RPD values of four calibration algorithms was 38.66% by calculating SPA on UVEPLS processed variables. Therefore there was much improvement of using UVEPLS on SPA spectral multivariable selection with both linear and nonlinear calibration algorithms in this case. Moreover, the RPD values of both linear and non-linear models based on the thirteen selected variables of UVEPLS-SPA show that coarse quantitative predictions of the protein determination in dried laver is possible based on Vis-SNIR spectra. We hope that the results obtained in this study will help both further chemometric (multivariate selection and calibration analysis) investigations and investigations in the sphere of applied vibrational (Near infrared, Mid-infrared and Raman) spectroscopy of sophisticated multicomponent systems." @default.
- W2003210850 created "2016-06-24" @default.
- W2003210850 creator A5017866368 @default.
- W2003210850 creator A5027155829 @default.
- W2003210850 creator A5038471317 @default.
- W2003210850 creator A5045535820 @default.
- W2003210850 creator A5074582166 @default.
- W2003210850 date "2011-01-01" @default.
- W2003210850 modified "2023-10-14" @default.
- W2003210850 title "Uninformative variable elimination for improvement of successive projections algorithm on spectral multivariable selection with different calibration algorithms for the rapid and non-destructive determination of protein content in dried laver" @default.
- W2003210850 cites W1966649791 @default.
- W2003210850 cites W1966964516 @default.
- W2003210850 cites W1970200460 @default.
- W2003210850 cites W1973087775 @default.
- W2003210850 cites W1974523379 @default.
- W2003210850 cites W1979386659 @default.
- W2003210850 cites W1982043257 @default.
- W2003210850 cites W1982755765 @default.
- W2003210850 cites W1983624408 @default.
- W2003210850 cites W1984962100 @default.
- W2003210850 cites W1992169765 @default.
- W2003210850 cites W2002499531 @default.
- W2003210850 cites W2003588382 @default.
- W2003210850 cites W2007808016 @default.
- W2003210850 cites W2016090370 @default.
- W2003210850 cites W2028217398 @default.
- W2003210850 cites W2028785071 @default.
- W2003210850 cites W2036890456 @default.
- W2003210850 cites W2040104179 @default.
- W2003210850 cites W2047610499 @default.
- W2003210850 cites W2050605378 @default.
- W2003210850 cites W2080226666 @default.
- W2003210850 cites W2084169316 @default.
- W2003210850 cites W2101849231 @default.
- W2003210850 cites W2109606373 @default.
- W2003210850 cites W2124775375 @default.
- W2003210850 cites W2162012409 @default.
- W2003210850 cites W2170701346 @default.
- W2003210850 cites W4243095980 @default.
- W2003210850 doi "https://doi.org/10.1039/c1ay05075c" @default.
- W2003210850 hasPublicationYear "2011" @default.
- W2003210850 type Work @default.
- W2003210850 sameAs 2003210850 @default.
- W2003210850 citedByCount "56" @default.
- W2003210850 countsByYear W20032108502012 @default.
- W2003210850 countsByYear W20032108502013 @default.
- W2003210850 countsByYear W20032108502014 @default.
- W2003210850 countsByYear W20032108502015 @default.
- W2003210850 countsByYear W20032108502016 @default.
- W2003210850 countsByYear W20032108502017 @default.
- W2003210850 countsByYear W20032108502018 @default.
- W2003210850 countsByYear W20032108502019 @default.
- W2003210850 countsByYear W20032108502020 @default.
- W2003210850 countsByYear W20032108502021 @default.
- W2003210850 countsByYear W20032108502022 @default.
- W2003210850 countsByYear W20032108502023 @default.
- W2003210850 crossrefType "journal-article" @default.
- W2003210850 hasAuthorship W2003210850A5017866368 @default.
- W2003210850 hasAuthorship W2003210850A5027155829 @default.
- W2003210850 hasAuthorship W2003210850A5038471317 @default.
- W2003210850 hasAuthorship W2003210850A5045535820 @default.
- W2003210850 hasAuthorship W2003210850A5074582166 @default.
- W2003210850 hasConcept C105795698 @default.
- W2003210850 hasConcept C11413529 @default.
- W2003210850 hasConcept C114614502 @default.
- W2003210850 hasConcept C117312493 @default.
- W2003210850 hasConcept C119857082 @default.
- W2003210850 hasConcept C12267149 @default.
- W2003210850 hasConcept C127413603 @default.
- W2003210850 hasConcept C133731056 @default.
- W2003210850 hasConcept C134306372 @default.
- W2003210850 hasConcept C148483581 @default.
- W2003210850 hasConcept C151304367 @default.
- W2003210850 hasConcept C154945302 @default.
- W2003210850 hasConcept C161584116 @default.
- W2003210850 hasConcept C163175372 @default.
- W2003210850 hasConcept C165838908 @default.
- W2003210850 hasConcept C169272836 @default.
- W2003210850 hasConcept C22354355 @default.
- W2003210850 hasConcept C2776214188 @default.
- W2003210850 hasConcept C2778152352 @default.
- W2003210850 hasConcept C33923547 @default.
- W2003210850 hasConcept C41008148 @default.
- W2003210850 hasConcept C48921125 @default.
- W2003210850 hasConcept C74193536 @default.
- W2003210850 hasConceptScore W2003210850C105795698 @default.
- W2003210850 hasConceptScore W2003210850C11413529 @default.
- W2003210850 hasConceptScore W2003210850C114614502 @default.
- W2003210850 hasConceptScore W2003210850C117312493 @default.
- W2003210850 hasConceptScore W2003210850C119857082 @default.
- W2003210850 hasConceptScore W2003210850C12267149 @default.
- W2003210850 hasConceptScore W2003210850C127413603 @default.
- W2003210850 hasConceptScore W2003210850C133731056 @default.
- W2003210850 hasConceptScore W2003210850C134306372 @default.
- W2003210850 hasConceptScore W2003210850C148483581 @default.
- W2003210850 hasConceptScore W2003210850C151304367 @default.
- W2003210850 hasConceptScore W2003210850C154945302 @default.
- W2003210850 hasConceptScore W2003210850C161584116 @default.