Matches in SemOpenAlex for { <https://semopenalex.org/work/W2003222039> ?p ?o ?g. }
- W2003222039 endingPage "426" @default.
- W2003222039 startingPage "366" @default.
- W2003222039 abstract "We consider the covariant Klein-Gordon equation (□gg+m2) φ = 0 of mass m ≥ 0 on the exterior Schwarzschild spacetime of mass M. We introduce and study a set of outer and inner wave operators Ω0±, Ω1± (constructed in detail elsewhere) describing the asymptotic behavior of classical solutions—Ω0± for large distances and Ω1± near the Schwarzschild radius—as t→±∞. We re-interpret Ω1± on the Kruskal spacetime as solving a characteristic initial value problem for data on the future/past right horizon H±. As a by-product, we prove (since we require it here) a stronger result than previously known concerning the stability of the Schwarzschild black hole against linearized (scalar) perturbations. Using Ω0+, Ω1+ we construct in and out and horizon fields for the corresponding quantum problem. We give a construction for the Hartle-Hawking state ωH and prove that it coincides on the in and out fields with a state of exact thermal equilibrium in Minkowski space, while its two-point function on the (right) horizons H± is given (independently of m) by ωH[(δUø̂)(U1,ξ1)(δUø̂)(U2,ξ2)] = (−δ(ξ1,ξ2)/16φM2)(U1−U2−iϵ)−2 (U1, U2ϵ (−∞, 0), ξ1, ξ2 ϵ S2) on H− and by a similar formula (with U→V, (−∞, 0) → (0, ∞), etc.) on H+. We also construct the Unruh state ωU as a product state, equal to the Minkowski vacuum on the in field, and with two-point function on H− equal to that given above for ωH. We prove that the restriction of this ωU to the out field coincides with a particular state of thermal radiation in Minkowski space. A special feature of our treatment is that we relate the horizon behavior of φ̂ with the light-cone behavior of a massless free scalar field φ̂1 in a two-dimensional flat spacetime: δ2ø̂1δT2−δ2ø̂1δX2 = 0. In particular, using our classical characteristic-intial-value-problem results, we explain why the above expression for the two-point function of ∂Uφ̂ on H is identical (modulo the trivial role played by S2 and up to a scale factor of 2M) with the well-known two-point function for ∂Uφ̂1 (U=T−X) on the null line T + X = 0." @default.
- W2003222039 created "2016-06-24" @default.
- W2003222039 creator A5002696356 @default.
- W2003222039 creator A5072232347 @default.
- W2003222039 date "1987-05-01" @default.
- W2003222039 modified "2023-10-17" @default.
- W2003222039 title "Classical and quantum scattering theory for linear scalar fields on the Schwarzschild metric I" @default.
- W2003222039 cites W1964127700 @default.
- W2003222039 cites W1989074507 @default.
- W2003222039 cites W1993918800 @default.
- W2003222039 cites W1995187954 @default.
- W2003222039 cites W2009395500 @default.
- W2003222039 cites W2017559862 @default.
- W2003222039 cites W2022209364 @default.
- W2003222039 cites W2024913636 @default.
- W2003222039 cites W2033723560 @default.
- W2003222039 cites W2035404655 @default.
- W2003222039 cites W2036938936 @default.
- W2003222039 cites W2044545050 @default.
- W2003222039 cites W2050566505 @default.
- W2003222039 cites W2055150480 @default.
- W2003222039 cites W2064084583 @default.
- W2003222039 cites W2079890182 @default.
- W2003222039 cites W2083571908 @default.
- W2003222039 cites W2085259825 @default.
- W2003222039 cites W2085486207 @default.
- W2003222039 cites W2088529531 @default.
- W2003222039 cites W2090386790 @default.
- W2003222039 cites W2100168895 @default.
- W2003222039 cites W2113642559 @default.
- W2003222039 cites W2118148695 @default.
- W2003222039 cites W2131856183 @default.
- W2003222039 cites W2223282020 @default.
- W2003222039 cites W2614529453 @default.
- W2003222039 cites W3022560009 @default.
- W2003222039 cites W628774535 @default.
- W2003222039 doi "https://doi.org/10.1016/0003-4916(87)90214-4" @default.
- W2003222039 hasPublicationYear "1987" @default.
- W2003222039 type Work @default.
- W2003222039 sameAs 2003222039 @default.
- W2003222039 citedByCount "73" @default.
- W2003222039 countsByYear W20032220392012 @default.
- W2003222039 countsByYear W20032220392013 @default.
- W2003222039 countsByYear W20032220392014 @default.
- W2003222039 countsByYear W20032220392015 @default.
- W2003222039 countsByYear W20032220392016 @default.
- W2003222039 countsByYear W20032220392017 @default.
- W2003222039 countsByYear W20032220392019 @default.
- W2003222039 countsByYear W20032220392020 @default.
- W2003222039 countsByYear W20032220392021 @default.
- W2003222039 countsByYear W20032220392022 @default.
- W2003222039 countsByYear W20032220392023 @default.
- W2003222039 crossrefType "journal-article" @default.
- W2003222039 hasAuthorship W2003222039A5002696356 @default.
- W2003222039 hasAuthorship W2003222039A5072232347 @default.
- W2003222039 hasConcept C101682238 @default.
- W2003222039 hasConcept C108568745 @default.
- W2003222039 hasConcept C110521144 @default.
- W2003222039 hasConcept C115304011 @default.
- W2003222039 hasConcept C120484201 @default.
- W2003222039 hasConcept C121332964 @default.
- W2003222039 hasConcept C130187892 @default.
- W2003222039 hasConcept C136125196 @default.
- W2003222039 hasConcept C147452769 @default.
- W2003222039 hasConcept C158622935 @default.
- W2003222039 hasConcept C2524010 @default.
- W2003222039 hasConcept C33923547 @default.
- W2003222039 hasConcept C37914503 @default.
- W2003222039 hasConcept C57691317 @default.
- W2003222039 hasConcept C62520636 @default.
- W2003222039 hasConcept C79464548 @default.
- W2003222039 hasConcept C84114770 @default.
- W2003222039 hasConcept C88018779 @default.
- W2003222039 hasConceptScore W2003222039C101682238 @default.
- W2003222039 hasConceptScore W2003222039C108568745 @default.
- W2003222039 hasConceptScore W2003222039C110521144 @default.
- W2003222039 hasConceptScore W2003222039C115304011 @default.
- W2003222039 hasConceptScore W2003222039C120484201 @default.
- W2003222039 hasConceptScore W2003222039C121332964 @default.
- W2003222039 hasConceptScore W2003222039C130187892 @default.
- W2003222039 hasConceptScore W2003222039C136125196 @default.
- W2003222039 hasConceptScore W2003222039C147452769 @default.
- W2003222039 hasConceptScore W2003222039C158622935 @default.
- W2003222039 hasConceptScore W2003222039C2524010 @default.
- W2003222039 hasConceptScore W2003222039C33923547 @default.
- W2003222039 hasConceptScore W2003222039C37914503 @default.
- W2003222039 hasConceptScore W2003222039C57691317 @default.
- W2003222039 hasConceptScore W2003222039C62520636 @default.
- W2003222039 hasConceptScore W2003222039C79464548 @default.
- W2003222039 hasConceptScore W2003222039C84114770 @default.
- W2003222039 hasConceptScore W2003222039C88018779 @default.
- W2003222039 hasIssue "2" @default.
- W2003222039 hasLocation W20032220391 @default.
- W2003222039 hasOpenAccess W2003222039 @default.
- W2003222039 hasPrimaryLocation W20032220391 @default.
- W2003222039 hasRelatedWork W1546373699 @default.
- W2003222039 hasRelatedWork W1657990219 @default.
- W2003222039 hasRelatedWork W1971265060 @default.