Matches in SemOpenAlex for { <https://semopenalex.org/work/W2003226293> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2003226293 endingPage "224" @default.
- W2003226293 startingPage "209" @default.
- W2003226293 abstract "Bart Verheij’s paper (this volume, p. 187) on argumentation support software (ASS) gives an excellent account of the past and present of ASS for legal reasoning, and offers some tantalizing glimpses of what the future may have to offer. In my reply, I want to focus on one particular aspect of his presentation, the use of ASS as a teaching tool and in particular a tool for the teaching of reasoning with facts and evidence. Generally speaking, there are good reasons to be sceptical when artificial intelligence (AI) systems are presented as teaching aids. The search for commercial strength legal expert systems that perform autonomously the tasks of human experts has so far proved largely elusive. Two related issues in particular have been identified as recurrent problems. The first is robustness, i.e. the ability to deal with new scenarios not anticipated by the developers. Systems are said to be robust if they remain operational in circumstances for which they were not designed. In the context of criminal evidence, for instance, robustness would require adaptability to unforeseen crime scenarios. This objective is difficult to achieve because low-volume major crimes tend to be virtually unique. Each major crime scenario potentially consists of a unique set of circumstances, while many conventional AI techniques have difficulties in handling previously unseen problem settings. This then results in the second problem, the knowledge acquisition bottleneck. Reasoning about evidence in legal settings is knowledge intensive, requiring input from a broad range of scientific disciplines and also formal representations of large chunks of everyday knowledge. In teaching environments by contrast, the educator has control over the type of problems they choose, their complexity and relevant parameters and features. This brings teaching applications seemingly closer to the ‘worked examples’ or prototypes that are so often the result of the research programs by small teams of academics that dominate the AI and law field—including projects by the author of this reply. Verheij deserves considerable credit for resisting the temptation to see teaching applications just as a simpler task for AI research. Of particular value is his emphasis on rigorous empirical evaluation of the effectiveness of his systems in a teaching environment, and the systematic way in which evaluations that he has carried out in the past influence his theoretical analysis of the problem. This type of evidence-based approach to software-supported teaching in law has so far been missing. Indeed, with few exceptions such as Hall and Zeleznikow (2001), there has been little research into the empirical valuation of legal AI in general. His conclusions are refreshingly honest too, identifying some potential problems in his own approach and indicating a whole range of possible extensions and even wholesale revisions. My observations and comments will elaborate on these findings. In" @default.
- W2003226293 created "2016-06-24" @default.
- W2003226293 creator A5011572139 @default.
- W2003226293 date "2007-10-10" @default.
- W2003226293 modified "2023-09-24" @default.
- W2003226293 title "Can you have too much of a good thing? A comment on Bart Verheij's legal argumentation support software" @default.
- W2003226293 cites W1572710464 @default.
- W2003226293 cites W1582174699 @default.
- W2003226293 cites W1599334645 @default.
- W2003226293 cites W1751175273 @default.
- W2003226293 cites W1893640151 @default.
- W2003226293 cites W1990100773 @default.
- W2003226293 cites W2028878459 @default.
- W2003226293 cites W2065577640 @default.
- W2003226293 cites W2084782910 @default.
- W2003226293 cites W2114271984 @default.
- W2003226293 cites W2120581177 @default.
- W2003226293 cites W2137521893 @default.
- W2003226293 cites W2161664509 @default.
- W2003226293 cites W3121673662 @default.
- W2003226293 doi "https://doi.org/10.1093/lpr/mgm038" @default.
- W2003226293 hasPublicationYear "2007" @default.
- W2003226293 type Work @default.
- W2003226293 sameAs 2003226293 @default.
- W2003226293 citedByCount "0" @default.
- W2003226293 crossrefType "journal-article" @default.
- W2003226293 hasAuthorship W2003226293A5011572139 @default.
- W2003226293 hasBestOaLocation W20032262931 @default.
- W2003226293 hasConcept C104317684 @default.
- W2003226293 hasConcept C111472728 @default.
- W2003226293 hasConcept C126838900 @default.
- W2003226293 hasConcept C138885662 @default.
- W2003226293 hasConcept C149635348 @default.
- W2003226293 hasConcept C151730666 @default.
- W2003226293 hasConcept C154945302 @default.
- W2003226293 hasConcept C165696696 @default.
- W2003226293 hasConcept C18296254 @default.
- W2003226293 hasConcept C185592680 @default.
- W2003226293 hasConcept C2522767166 @default.
- W2003226293 hasConcept C2777601897 @default.
- W2003226293 hasConcept C2779343474 @default.
- W2003226293 hasConcept C2780513914 @default.
- W2003226293 hasConcept C38652104 @default.
- W2003226293 hasConcept C41008148 @default.
- W2003226293 hasConcept C55493867 @default.
- W2003226293 hasConcept C63479239 @default.
- W2003226293 hasConcept C65059942 @default.
- W2003226293 hasConcept C71924100 @default.
- W2003226293 hasConcept C86803240 @default.
- W2003226293 hasConceptScore W2003226293C104317684 @default.
- W2003226293 hasConceptScore W2003226293C111472728 @default.
- W2003226293 hasConceptScore W2003226293C126838900 @default.
- W2003226293 hasConceptScore W2003226293C138885662 @default.
- W2003226293 hasConceptScore W2003226293C149635348 @default.
- W2003226293 hasConceptScore W2003226293C151730666 @default.
- W2003226293 hasConceptScore W2003226293C154945302 @default.
- W2003226293 hasConceptScore W2003226293C165696696 @default.
- W2003226293 hasConceptScore W2003226293C18296254 @default.
- W2003226293 hasConceptScore W2003226293C185592680 @default.
- W2003226293 hasConceptScore W2003226293C2522767166 @default.
- W2003226293 hasConceptScore W2003226293C2777601897 @default.
- W2003226293 hasConceptScore W2003226293C2779343474 @default.
- W2003226293 hasConceptScore W2003226293C2780513914 @default.
- W2003226293 hasConceptScore W2003226293C38652104 @default.
- W2003226293 hasConceptScore W2003226293C41008148 @default.
- W2003226293 hasConceptScore W2003226293C55493867 @default.
- W2003226293 hasConceptScore W2003226293C63479239 @default.
- W2003226293 hasConceptScore W2003226293C65059942 @default.
- W2003226293 hasConceptScore W2003226293C71924100 @default.
- W2003226293 hasConceptScore W2003226293C86803240 @default.
- W2003226293 hasIssue "1-4" @default.
- W2003226293 hasLocation W20032262931 @default.
- W2003226293 hasOpenAccess W2003226293 @default.
- W2003226293 hasPrimaryLocation W20032262931 @default.
- W2003226293 hasRelatedWork W1493131192 @default.
- W2003226293 hasRelatedWork W1544285175 @default.
- W2003226293 hasRelatedWork W1581876134 @default.
- W2003226293 hasRelatedWork W1977347181 @default.
- W2003226293 hasRelatedWork W2049679091 @default.
- W2003226293 hasRelatedWork W2325464558 @default.
- W2003226293 hasRelatedWork W2373713487 @default.
- W2003226293 hasRelatedWork W2748952813 @default.
- W2003226293 hasRelatedWork W2899084033 @default.
- W2003226293 hasRelatedWork W60899261 @default.
- W2003226293 hasVolume "6" @default.
- W2003226293 isParatext "false" @default.
- W2003226293 isRetracted "false" @default.
- W2003226293 magId "2003226293" @default.
- W2003226293 workType "article" @default.