Matches in SemOpenAlex for { <https://semopenalex.org/work/W2003233438> ?p ?o ?g. }
- W2003233438 endingPage "161" @default.
- W2003233438 startingPage "150" @default.
- W2003233438 abstract "Assessing the presence of human pathogenic Cryptosporidium oocysts in surface water remains a significant water treatment and public health challenge. Most drinking water suppliers rely on fecal indicators, such as the well-established Escherichia coli (E. coli), to avoid costly Cryptosporidium assays. However, the use of E. coli has significant limitations in predicting the concentration, the removal and the transport of Cryptosporidium. This study presents a meta-analysis of E. coli to Cryptosporidium concentration paired ratios to compare their complex relationships in eight municipal wastewater sources, five agricultural fecal pollution sources and at 13 drinking water intakes (DWI) to a risk threshold based on US Environmental Protection Agency (USEPA) regulations. Ratios lower than the USEPA risk threshold suggested higher concentrations of oocysts in relation to E. coli concentrations, revealing an underestimed risk for Cryptosporidium based on E. coli measurements. In raw sewage (RS), high ratios proved E. coli (or fecal coliforms) concentrations were a conservative indicator of Cryptosporidium concentrations, which was also typically true for secondary treated wastewater (TWW). Removals of fecal indicator bacteria (FIB) and parasites were quantified in WWTPs and their differences are put forward as a plausible explanation of the sporadic ratio shift. Ratios measured from agricultural runoff surface water were typically lower than the USEPA risk threshold and within the range of risk misinterpretation. Indeed, heavy precipitation events in the agricultural watershed led to high oocyst concentrations but not to E. coli or enterococci concentrations. More importantly, ratios established in variously impacted DWI from 13 Canadian drinking water plants were found to be related to dominant fecal pollution sources, namely municipal sewage. In most cases, when DWIs were mainly influenced by municipal sewage, E. coli or fecal coliforms concentrations agreed with Cryptosporidium concentrations as estimated by the meta-analysis, but when DWIs were influenced by agricultural runoff or wildlife, there was a poor relationship. Average recovery values were available for 6 out of 22 Cryptosporidium concentration data sets and concomitant analysis demonstrated no changes in trends, with and without correction. Nevertheless, recovery assays performed along with every oocyst count would have enhanced the precision of this work. Based on our findings, the use of annual averages of E. coli concentrations as a surrogate for Cryptosporidium concentrations can result in an inaccurate estimate of the Cryptosporidium risk for agriculture impacted drinking water intakes or for intakes with more distant wastewater sources. Studies of upstream fecal pollution sources are recommended for drinking water suppliers to improve their interpretation of source water quality data." @default.
- W2003233438 created "2016-06-24" @default.
- W2003233438 creator A5007759048 @default.
- W2003233438 creator A5033399824 @default.
- W2003233438 creator A5046583307 @default.
- W2003233438 creator A5068170059 @default.
- W2003233438 creator A5073602725 @default.
- W2003233438 creator A5083228613 @default.
- W2003233438 creator A5084760180 @default.
- W2003233438 creator A5090551254 @default.
- W2003233438 date "2014-05-01" @default.
- W2003233438 modified "2023-10-14" @default.
- W2003233438 title "Changes in Escherichia coli to Cryptosporidium ratios for various fecal pollution sources and drinking water intakes" @default.
- W2003233438 cites W1480059484 @default.
- W2003233438 cites W1568236818 @default.
- W2003233438 cites W1586566795 @default.
- W2003233438 cites W1977805911 @default.
- W2003233438 cites W1978719141 @default.
- W2003233438 cites W1983503285 @default.
- W2003233438 cites W1988187926 @default.
- W2003233438 cites W1991802749 @default.
- W2003233438 cites W1996107845 @default.
- W2003233438 cites W1997295241 @default.
- W2003233438 cites W2005977402 @default.
- W2003233438 cites W2015683507 @default.
- W2003233438 cites W2016169712 @default.
- W2003233438 cites W2037131177 @default.
- W2003233438 cites W2047294135 @default.
- W2003233438 cites W2052087857 @default.
- W2003233438 cites W2053123228 @default.
- W2003233438 cites W2056913884 @default.
- W2003233438 cites W2064230648 @default.
- W2003233438 cites W2066081846 @default.
- W2003233438 cites W2068366757 @default.
- W2003233438 cites W2074939169 @default.
- W2003233438 cites W2076204985 @default.
- W2003233438 cites W2086951746 @default.
- W2003233438 cites W2096399930 @default.
- W2003233438 cites W2100310412 @default.
- W2003233438 cites W2100817153 @default.
- W2003233438 cites W2101730782 @default.
- W2003233438 cites W2110840188 @default.
- W2003233438 cites W2117594526 @default.
- W2003233438 cites W2122504570 @default.
- W2003233438 cites W2132218976 @default.
- W2003233438 cites W2133927787 @default.
- W2003233438 cites W2149526186 @default.
- W2003233438 cites W2149922632 @default.
- W2003233438 cites W2151615776 @default.
- W2003233438 cites W2153422427 @default.
- W2003233438 cites W2158146143 @default.
- W2003233438 cites W2163611282 @default.
- W2003233438 cites W2165719039 @default.
- W2003233438 cites W2312734025 @default.
- W2003233438 cites W2333174363 @default.
- W2003233438 cites W2885336116 @default.
- W2003233438 cites W2887783857 @default.
- W2003233438 cites W33778696 @default.
- W2003233438 cites W4235444572 @default.
- W2003233438 cites W4240373142 @default.
- W2003233438 cites W4240578769 @default.
- W2003233438 cites W4250585150 @default.
- W2003233438 doi "https://doi.org/10.1016/j.watres.2014.01.050" @default.
- W2003233438 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24607521" @default.
- W2003233438 hasPublicationYear "2014" @default.
- W2003233438 type Work @default.
- W2003233438 sameAs 2003233438 @default.
- W2003233438 citedByCount "24" @default.
- W2003233438 countsByYear W20032334382014 @default.
- W2003233438 countsByYear W20032334382015 @default.
- W2003233438 countsByYear W20032334382016 @default.
- W2003233438 countsByYear W20032334382017 @default.
- W2003233438 countsByYear W20032334382018 @default.
- W2003233438 countsByYear W20032334382019 @default.
- W2003233438 countsByYear W20032334382021 @default.
- W2003233438 countsByYear W20032334382022 @default.
- W2003233438 countsByYear W20032334382023 @default.
- W2003233438 crossrefType "journal-article" @default.
- W2003233438 hasAuthorship W2003233438A5007759048 @default.
- W2003233438 hasAuthorship W2003233438A5033399824 @default.
- W2003233438 hasAuthorship W2003233438A5046583307 @default.
- W2003233438 hasAuthorship W2003233438A5068170059 @default.
- W2003233438 hasAuthorship W2003233438A5073602725 @default.
- W2003233438 hasAuthorship W2003233438A5083228613 @default.
- W2003233438 hasAuthorship W2003233438A5084760180 @default.
- W2003233438 hasAuthorship W2003233438A5090551254 @default.
- W2003233438 hasConcept C104317684 @default.
- W2003233438 hasConcept C107872376 @default.
- W2003233438 hasConcept C124956284 @default.
- W2003233438 hasConcept C185592680 @default.
- W2003233438 hasConcept C18903297 @default.
- W2003233438 hasConcept C19644921 @default.
- W2003233438 hasConcept C2778877831 @default.
- W2003233438 hasConcept C2780797713 @default.
- W2003233438 hasConcept C39432304 @default.
- W2003233438 hasConcept C42972112 @default.
- W2003233438 hasConcept C521259446 @default.
- W2003233438 hasConcept C547475151 @default.