Matches in SemOpenAlex for { <https://semopenalex.org/work/W2003297974> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2003297974 abstract "This paper gives a method for constructing all links in S3, beginning with the unknot and adding at most one to the norm of the link at each stage. This has two corollaries. The first is that links with 'minimal' skein trees are fibered. The second is a complete list of all links with skein trees of height two. In [2] it is shown that three links related by the Conway moves have closely related Thurston norm minimizing Seifert surfaces. This is used to give a lower bound on the height of a skein tree for a link. Here these results are extended to yield a method for constructing all links, beginning with the unknot and adding at most one to the norm of the link at each stage. This has two corollaries: the first is that if the lower bound obtained in [2] is realized, then the link must be fibered. The second is a complete list of all links with skein trees of height two. It is surprisingly easy to obtain this second corollary, especially when one considers that the question of characterizing skein trees of height one is equivalent to the question of whether one can band together two knots in some non-trivial way to obtain the unknot. This was a long-standing problem, eventually solved by M. Scharlemann [1]. (1.1 ) Definition. A Seifert surface for an oriented link L in S3 is an oriented surface S, with no closed components, such that aS = L. S is taut if there is no Seifert surface for L of larger Euler characteristic. This is equivalent to being Thurston norm minimizing and incompressible [2]. Let X(L) be minus the Euler characteristic of a taut Seifert surface for L. (1.2) Definition. Three oriented links L+, L_ and Lo in S3 are related by the Conway moves if they are identical outside a three-ball B where they appear as in Figure 1. We refer to [2] for the definitions of a skein tree T for a link L, a node of T, a leaf of T, the height of a skein tree for L and the height of L, written h(L). Received by the editors August 25, 1988. 1980 Mathematics Subject Classification (1985 Revision). Primary 57M25. The author was supported in part by a National Science Foundation grant and the Lady Davis Fellowship Trust. i) 1989 American Mathematical Society 0002-9939/89 $1.00 + $.25 per page" @default.
- W2003297974 created "2016-06-24" @default.
- W2003297974 creator A5076075873 @default.
- W2003297974 date "1989-04-01" @default.
- W2003297974 modified "2023-10-18" @default.
- W2003297974 title "Thurston norm minimizing surfaces and skein trees for links in $Ssp 3$" @default.
- W2003297974 cites W2004448246 @default.
- W2003297974 cites W2066820013 @default.
- W2003297974 doi "https://doi.org/10.1090/s0002-9939-1989-0969321-3" @default.
- W2003297974 hasPublicationYear "1989" @default.
- W2003297974 type Work @default.
- W2003297974 sameAs 2003297974 @default.
- W2003297974 citedByCount "3" @default.
- W2003297974 countsByYear W20032979742014 @default.
- W2003297974 countsByYear W20032979742016 @default.
- W2003297974 countsByYear W20032979742019 @default.
- W2003297974 crossrefType "journal-article" @default.
- W2003297974 hasAuthorship W2003297974A5076075873 @default.
- W2003297974 hasBestOaLocation W20032979741 @default.
- W2003297974 hasConcept C114614502 @default.
- W2003297974 hasConcept C127413603 @default.
- W2003297974 hasConcept C133776654 @default.
- W2003297974 hasConcept C17744445 @default.
- W2003297974 hasConcept C191795146 @default.
- W2003297974 hasConcept C194674032 @default.
- W2003297974 hasConcept C199539241 @default.
- W2003297974 hasConcept C202444582 @default.
- W2003297974 hasConcept C2779863119 @default.
- W2003297974 hasConcept C2780012671 @default.
- W2003297974 hasConcept C2780286412 @default.
- W2003297974 hasConcept C33923547 @default.
- W2003297974 hasConcept C42360764 @default.
- W2003297974 hasConceptScore W2003297974C114614502 @default.
- W2003297974 hasConceptScore W2003297974C127413603 @default.
- W2003297974 hasConceptScore W2003297974C133776654 @default.
- W2003297974 hasConceptScore W2003297974C17744445 @default.
- W2003297974 hasConceptScore W2003297974C191795146 @default.
- W2003297974 hasConceptScore W2003297974C194674032 @default.
- W2003297974 hasConceptScore W2003297974C199539241 @default.
- W2003297974 hasConceptScore W2003297974C202444582 @default.
- W2003297974 hasConceptScore W2003297974C2779863119 @default.
- W2003297974 hasConceptScore W2003297974C2780012671 @default.
- W2003297974 hasConceptScore W2003297974C2780286412 @default.
- W2003297974 hasConceptScore W2003297974C33923547 @default.
- W2003297974 hasConceptScore W2003297974C42360764 @default.
- W2003297974 hasLocation W20032979741 @default.
- W2003297974 hasOpenAccess W2003297974 @default.
- W2003297974 hasPrimaryLocation W20032979741 @default.
- W2003297974 hasRelatedWork W1614977134 @default.
- W2003297974 hasRelatedWork W175427486 @default.
- W2003297974 hasRelatedWork W2022874746 @default.
- W2003297974 hasRelatedWork W2030216116 @default.
- W2003297974 hasRelatedWork W2150163848 @default.
- W2003297974 hasRelatedWork W2157631413 @default.
- W2003297974 hasRelatedWork W2336549946 @default.
- W2003297974 hasRelatedWork W2768039968 @default.
- W2003297974 hasRelatedWork W2897166701 @default.
- W2003297974 hasRelatedWork W2950324746 @default.
- W2003297974 hasRelatedWork W2950377261 @default.
- W2003297974 hasRelatedWork W2951191329 @default.
- W2003297974 hasRelatedWork W2952021740 @default.
- W2003297974 hasRelatedWork W2952034310 @default.
- W2003297974 hasRelatedWork W2963223271 @default.
- W2003297974 hasRelatedWork W2964347402 @default.
- W2003297974 hasRelatedWork W3006659060 @default.
- W2003297974 hasRelatedWork W3098534296 @default.
- W2003297974 hasRelatedWork W3100668785 @default.
- W2003297974 hasRelatedWork W3105353913 @default.
- W2003297974 isParatext "false" @default.
- W2003297974 isRetracted "false" @default.
- W2003297974 magId "2003297974" @default.
- W2003297974 workType "article" @default.