Matches in SemOpenAlex for { <https://semopenalex.org/work/W2003305909> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2003305909 abstract "In this study, the detection of delamination flaws in laminated composite plates is carried out using artificial neural networks (ANN) in a two-level cascading manner. The three damage parameters detected using ANN are the size of the delamination, its vertical location (across the plate thickness) and horizontal location (along the plate surface). The numerical data in the form of frequency domain Green's function for the displacement response on the surface of the plate containing the delamination flaw is generated first using an available numerical method. Pseudo-experimental data is generated adding artificial random noise into the numerical data. At the first level, a counterpropagation neural network (CPN) is trained for qualitatively classifying the damage parameters using the numerical data generated above. Next, a second level back-propagation network (BPN) is used for each subclass to quantify the damage parameters. An overlapping data set is used for the training of each class of the second level network. As a result, any pattern misclassified by the CPN due to its closeness to the boundary of any two classes is still quantified correctly. By feeding pseudo-experimental data to the trained networks, it is seen that the classification success rate and noise tolerance level of CPN is excellent. The quantification of damage by the second level BPN is also good. It is possible to stop after the first level if only a qualitative assessment of the damage and its approximate location is required. These cascaded networks show promise in providing a successful delamination damage detection tool." @default.
- W2003305909 created "2016-06-24" @default.
- W2003305909 creator A5055345775 @default.
- W2003305909 creator A5074076199 @default.
- W2003305909 date "2005-05-09" @default.
- W2003305909 modified "2023-09-23" @default.
- W2003305909 title "<title>Neural networks for delamination flaw detection in FRP laminated composite plates</title>" @default.
- W2003305909 doi "https://doi.org/10.1117/12.599810" @default.
- W2003305909 hasPublicationYear "2005" @default.
- W2003305909 type Work @default.
- W2003305909 sameAs 2003305909 @default.
- W2003305909 citedByCount "0" @default.
- W2003305909 crossrefType "proceedings-article" @default.
- W2003305909 hasAuthorship W2003305909A5055345775 @default.
- W2003305909 hasAuthorship W2003305909A5074076199 @default.
- W2003305909 hasConcept C107551265 @default.
- W2003305909 hasConcept C11413529 @default.
- W2003305909 hasConcept C115961682 @default.
- W2003305909 hasConcept C127313418 @default.
- W2003305909 hasConcept C127413603 @default.
- W2003305909 hasConcept C151730666 @default.
- W2003305909 hasConcept C154945302 @default.
- W2003305909 hasConcept C15744967 @default.
- W2003305909 hasConcept C30239060 @default.
- W2003305909 hasConcept C41008148 @default.
- W2003305909 hasConcept C50644808 @default.
- W2003305909 hasConcept C542102704 @default.
- W2003305909 hasConcept C58097730 @default.
- W2003305909 hasConcept C66938386 @default.
- W2003305909 hasConcept C77928131 @default.
- W2003305909 hasConcept C99498987 @default.
- W2003305909 hasConceptScore W2003305909C107551265 @default.
- W2003305909 hasConceptScore W2003305909C11413529 @default.
- W2003305909 hasConceptScore W2003305909C115961682 @default.
- W2003305909 hasConceptScore W2003305909C127313418 @default.
- W2003305909 hasConceptScore W2003305909C127413603 @default.
- W2003305909 hasConceptScore W2003305909C151730666 @default.
- W2003305909 hasConceptScore W2003305909C154945302 @default.
- W2003305909 hasConceptScore W2003305909C15744967 @default.
- W2003305909 hasConceptScore W2003305909C30239060 @default.
- W2003305909 hasConceptScore W2003305909C41008148 @default.
- W2003305909 hasConceptScore W2003305909C50644808 @default.
- W2003305909 hasConceptScore W2003305909C542102704 @default.
- W2003305909 hasConceptScore W2003305909C58097730 @default.
- W2003305909 hasConceptScore W2003305909C66938386 @default.
- W2003305909 hasConceptScore W2003305909C77928131 @default.
- W2003305909 hasConceptScore W2003305909C99498987 @default.
- W2003305909 hasLocation W20033059091 @default.
- W2003305909 hasOpenAccess W2003305909 @default.
- W2003305909 hasPrimaryLocation W20033059091 @default.
- W2003305909 hasRelatedWork W1999766316 @default.
- W2003305909 hasRelatedWork W2349192636 @default.
- W2003305909 hasRelatedWork W2351491280 @default.
- W2003305909 hasRelatedWork W2380313759 @default.
- W2003305909 hasRelatedWork W2386387936 @default.
- W2003305909 hasRelatedWork W2386767533 @default.
- W2003305909 hasRelatedWork W2392110728 @default.
- W2003305909 hasRelatedWork W303980170 @default.
- W2003305909 hasRelatedWork W3107474891 @default.
- W2003305909 hasRelatedWork W1629725936 @default.
- W2003305909 isParatext "false" @default.
- W2003305909 isRetracted "false" @default.
- W2003305909 magId "2003305909" @default.
- W2003305909 workType "article" @default.