Matches in SemOpenAlex for { <https://semopenalex.org/work/W2003328088> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2003328088 endingPage "1699" @default.
- W2003328088 startingPage "1679" @default.
- W2003328088 abstract "Item response theory (IRT) comprises a set of statistical models which are useful in many fields, especially when there is an interest in studying latent variables (or latent traits). Usually such latent traits are assumed to be random variables and a convenient distribution is assigned to them. A very common choice for such a distribution has been the standard normal. Recently, Azevedo et al. [Bayesian inference for a skew-normal IRT model under the centred parameterization, Comput. Stat. Data Anal. 55 (2011), pp. 353–365] proposed a skew-normal distribution under the centred parameterization (SNCP) as had been studied in [R.B. Arellano-Valle and A. Azzalini, The centred parametrization for the multivariate skew-normal distribution, J. Multivariate Anal. 99(7) (2008), pp. 1362–1382], to model the latent trait distribution. This approach allows one to represent any asymmetric behaviour concerning the latent trait distribution. Also, they developed a Metropolis–Hastings within the Gibbs sampling (MHWGS) algorithm based on the density of the SNCP. They showed that the algorithm recovers all parameters properly. Their results indicated that, in the presence of asymmetry, the proposed model and the estimation algorithm perform better than the usual model and estimation methods. Our main goal in this paper is to propose another type of MHWGS algorithm based on a stochastic representation (hierarchical structure) of the SNCP studied in [N. Henze, A probabilistic representation of the skew-normal distribution, Scand. J. Statist. 13 (1986), pp. 271–275]. Our algorithm has only one Metropolis–Hastings step, in opposition to the algorithm developed by Azevedo et al., which has two such steps. This not only makes the implementation easier but also reduces the number of proposal densities to be used, which can be a problem in the implementation of MHWGS algorithms, as can be seen in [R.J. Patz and B.W. Junker, A straightforward approach to Markov Chain Monte Carlo methods for item response models, J. Educ. Behav. Stat. 24(2) (1999), pp. 146–178; R.J. Patz and B.W. Junker, The applications and extensions of MCMC in IRT: Multiple item types, missing data, and rated responses, J. Educ. Behav. Stat. 24(4) (1999), pp. 342–366; A. Gelman, G.O. Roberts, and W.R. Gilks, Efficient Metropolis jumping rules, Bayesian Stat. 5 (1996), pp. 599–607]. Moreover, we consider a modified beta prior (which generalizes the one considered in [3 Azevedo, C. L.N., Bolfarine, H. and Andrade, D. F. 2011. Bayesian inference for a skew-normal IRT model under the centred parameterization. Comput. Stat. Data Anal., 55: 353–365. [Crossref], [Web of Science ®] , [Google Scholar]]) and a Jeffreys prior for the asymmetry parameter. Furthermore, we study the sensitivity of such priors as well as the use of different kernel densities for this parameter. Finally, we assess the impact of the number of examinees, number of items and the asymmetry level on the parameter recovery. Results of the simulation study indicated that our approach performed equally as well as that in [3 Azevedo, C. L.N., Bolfarine, H. and Andrade, D. F. 2011. Bayesian inference for a skew-normal IRT model under the centred parameterization. Comput. Stat. Data Anal., 55: 353–365. [Crossref], [Web of Science ®] , [Google Scholar]], in terms of parameter recovery, mainly using the Jeffreys prior. Also, they indicated that the asymmetry level has the highest impact on parameter recovery, even though it is relatively small. A real data analysis is considered jointly with the development of model fitting assessment tools. The results are compared with the ones obtained by Azevedo et al. The results indicate that using the hierarchical approach allows us to implement MCMC algorithms more easily, it facilitates diagnosis of the convergence and also it can be very useful to fit more complex skew IRT models." @default.
- W2003328088 created "2016-06-24" @default.
- W2003328088 creator A5017256388 @default.
- W2003328088 creator A5030324554 @default.
- W2003328088 creator A5079855117 @default.
- W2003328088 date "2012-11-01" @default.
- W2003328088 modified "2023-10-02" @default.
- W2003328088 title "Parameter recovery for a skew-normal IRT model under a Bayesian approach: hierarchical framework, prior and kernel sensitivity and sample size" @default.
- W2003328088 cites W1980071153 @default.
- W2003328088 cites W1980348958 @default.
- W2003328088 cites W2017966270 @default.
- W2003328088 cites W2039003808 @default.
- W2003328088 cites W2055715941 @default.
- W2003328088 cites W2056080599 @default.
- W2003328088 cites W2093781180 @default.
- W2003328088 cites W2121978843 @default.
- W2003328088 cites W2129187472 @default.
- W2003328088 cites W2158518800 @default.
- W2003328088 cites W2889272830 @default.
- W2003328088 cites W4240166507 @default.
- W2003328088 cites W4256038730 @default.
- W2003328088 doi "https://doi.org/10.1080/00949655.2011.591798" @default.
- W2003328088 hasPublicationYear "2012" @default.
- W2003328088 type Work @default.
- W2003328088 sameAs 2003328088 @default.
- W2003328088 citedByCount "5" @default.
- W2003328088 countsByYear W20033280882013 @default.
- W2003328088 countsByYear W20033280882014 @default.
- W2003328088 countsByYear W20033280882018 @default.
- W2003328088 countsByYear W20033280882021 @default.
- W2003328088 crossrefType "journal-article" @default.
- W2003328088 hasAuthorship W2003328088A5017256388 @default.
- W2003328088 hasAuthorship W2003328088A5030324554 @default.
- W2003328088 hasAuthorship W2003328088A5079855117 @default.
- W2003328088 hasConcept C102094743 @default.
- W2003328088 hasConcept C105795698 @default.
- W2003328088 hasConcept C107673813 @default.
- W2003328088 hasConcept C111350023 @default.
- W2003328088 hasConcept C11413529 @default.
- W2003328088 hasConcept C158424031 @default.
- W2003328088 hasConcept C204693719 @default.
- W2003328088 hasConcept C28826006 @default.
- W2003328088 hasConcept C33923547 @default.
- W2003328088 hasConcept C43694697 @default.
- W2003328088 hasConcept C51167844 @default.
- W2003328088 hasConceptScore W2003328088C102094743 @default.
- W2003328088 hasConceptScore W2003328088C105795698 @default.
- W2003328088 hasConceptScore W2003328088C107673813 @default.
- W2003328088 hasConceptScore W2003328088C111350023 @default.
- W2003328088 hasConceptScore W2003328088C11413529 @default.
- W2003328088 hasConceptScore W2003328088C158424031 @default.
- W2003328088 hasConceptScore W2003328088C204693719 @default.
- W2003328088 hasConceptScore W2003328088C28826006 @default.
- W2003328088 hasConceptScore W2003328088C33923547 @default.
- W2003328088 hasConceptScore W2003328088C43694697 @default.
- W2003328088 hasConceptScore W2003328088C51167844 @default.
- W2003328088 hasIssue "11" @default.
- W2003328088 hasLocation W20033280881 @default.
- W2003328088 hasOpenAccess W2003328088 @default.
- W2003328088 hasPrimaryLocation W20033280881 @default.
- W2003328088 hasRelatedWork W2018150900 @default.
- W2003328088 hasRelatedWork W2038626737 @default.
- W2003328088 hasRelatedWork W2039762882 @default.
- W2003328088 hasRelatedWork W2066716418 @default.
- W2003328088 hasRelatedWork W2075470739 @default.
- W2003328088 hasRelatedWork W2283033640 @default.
- W2003328088 hasRelatedWork W2352563150 @default.
- W2003328088 hasRelatedWork W2378856205 @default.
- W2003328088 hasRelatedWork W2753217981 @default.
- W2003328088 hasRelatedWork W81404691 @default.
- W2003328088 hasVolume "82" @default.
- W2003328088 isParatext "false" @default.
- W2003328088 isRetracted "false" @default.
- W2003328088 magId "2003328088" @default.
- W2003328088 workType "article" @default.