Matches in SemOpenAlex for { <https://semopenalex.org/work/W2003345980> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2003345980 abstract "Many practical problems (frequency assignement, register allocation, timetables) may be formulated as graph (vertex-)coloring problems, but finding solutions for them is difficult as long as they are treated in the most general case (where the graph is arbitrary), since vertex coloring has been proved to be NP-complete. The problem becomes much easier to solve if the graph resulting from the modelisation of the practical application belongs to some particular class of graphs, for which solutions to the problem are known. Meyniel graphs form such a class (a fast coloring algorithm can be found in [9]), for which an efficient recognizing algorithm is therefore needed. A graph G=(V,E) is said to be a Meyniel graph if every odd cycle of G on at least five vertices contains at least two chords. Meyniel graphs generalize both i-triangulated and parity graphs, two well known classes of perfect graphs that will be present in our paper in Section 7. In [2], Burlet and Fonlupt propose a characterization of Meyniel graphs which relies on the following property: the class of Meyniel graphs may be obtained from some basic Meyniel graphs using a binary operation called amalgam. Besides the theoretical interest of this result, a practical interest arises because of the polynomial recognition algorithm which can be obtained. Unfortunately, it is quite expensive to verify if a given graph is the amalgam of two graphs (therefore the complexity of the whole algorithm is in O(n 7 )), and this supports the idea that a new point of view is needed to find a more efficient algorithm. Our approach of Meyniel graphs will be directed through the search of a general structure. Intuitively, a Meyniel graph either will be simple (i.e. with no hole or domino), or will have a skeleton around which the rest of the graph will be regularly organized. As suggested, the first type of Meyniel graphs is simple to identify. For the second type, a deeper analysis is necessary; it yields a characterization theorem, which is used to deduce the O(m 2 +mn) recognition algorithm." @default.
- W2003345980 created "2016-06-24" @default.
- W2003345980 creator A5031719973 @default.
- W2003345980 creator A5089799994 @default.
- W2003345980 date "1999-06-01" @default.
- W2003345980 modified "2023-09-27" @default.
- W2003345980 title "HOLES AND DOMINOES IN MEYNIEL GRAPHS" @default.
- W2003345980 cites W1968161962 @default.
- W2003345980 cites W2000763343 @default.
- W2003345980 cites W2013879243 @default.
- W2003345980 cites W2045664805 @default.
- W2003345980 doi "https://doi.org/10.1142/s0129054199000113" @default.
- W2003345980 hasPublicationYear "1999" @default.
- W2003345980 type Work @default.
- W2003345980 sameAs 2003345980 @default.
- W2003345980 citedByCount "14" @default.
- W2003345980 countsByYear W20033459802012 @default.
- W2003345980 countsByYear W20033459802013 @default.
- W2003345980 countsByYear W20033459802014 @default.
- W2003345980 countsByYear W20033459802016 @default.
- W2003345980 countsByYear W20033459802018 @default.
- W2003345980 crossrefType "journal-article" @default.
- W2003345980 hasAuthorship W2003345980A5031719973 @default.
- W2003345980 hasAuthorship W2003345980A5089799994 @default.
- W2003345980 hasConcept C102192266 @default.
- W2003345980 hasConcept C114614502 @default.
- W2003345980 hasConcept C118615104 @default.
- W2003345980 hasConcept C132525143 @default.
- W2003345980 hasConcept C160446614 @default.
- W2003345980 hasConcept C203776342 @default.
- W2003345980 hasConcept C311688 @default.
- W2003345980 hasConcept C33923547 @default.
- W2003345980 hasConcept C41008148 @default.
- W2003345980 hasConcept C43517604 @default.
- W2003345980 hasConcept C59824394 @default.
- W2003345980 hasConcept C74133993 @default.
- W2003345980 hasConcept C76946457 @default.
- W2003345980 hasConcept C8554925 @default.
- W2003345980 hasConceptScore W2003345980C102192266 @default.
- W2003345980 hasConceptScore W2003345980C114614502 @default.
- W2003345980 hasConceptScore W2003345980C118615104 @default.
- W2003345980 hasConceptScore W2003345980C132525143 @default.
- W2003345980 hasConceptScore W2003345980C160446614 @default.
- W2003345980 hasConceptScore W2003345980C203776342 @default.
- W2003345980 hasConceptScore W2003345980C311688 @default.
- W2003345980 hasConceptScore W2003345980C33923547 @default.
- W2003345980 hasConceptScore W2003345980C41008148 @default.
- W2003345980 hasConceptScore W2003345980C43517604 @default.
- W2003345980 hasConceptScore W2003345980C59824394 @default.
- W2003345980 hasConceptScore W2003345980C74133993 @default.
- W2003345980 hasConceptScore W2003345980C76946457 @default.
- W2003345980 hasConceptScore W2003345980C8554925 @default.
- W2003345980 hasLocation W20033459801 @default.
- W2003345980 hasLocation W20033459802 @default.
- W2003345980 hasLocation W20033459803 @default.
- W2003345980 hasOpenAccess W2003345980 @default.
- W2003345980 hasPrimaryLocation W20033459801 @default.
- W2003345980 hasRelatedWork W1970195683 @default.
- W2003345980 hasRelatedWork W1971319751 @default.
- W2003345980 hasRelatedWork W1977862280 @default.
- W2003345980 hasRelatedWork W2085740124 @default.
- W2003345980 hasRelatedWork W2143498657 @default.
- W2003345980 hasRelatedWork W2169699292 @default.
- W2003345980 hasRelatedWork W2963631220 @default.
- W2003345980 hasRelatedWork W3139101777 @default.
- W2003345980 hasRelatedWork W4301442952 @default.
- W2003345980 hasRelatedWork W87964322 @default.
- W2003345980 isParatext "false" @default.
- W2003345980 isRetracted "false" @default.
- W2003345980 magId "2003345980" @default.
- W2003345980 workType "article" @default.