Matches in SemOpenAlex for { <https://semopenalex.org/work/W2003409616> ?p ?o ?g. }
- W2003409616 endingPage "94" @default.
- W2003409616 startingPage "83" @default.
- W2003409616 abstract "The foreland of the Damma glacier (Switzerland) was investigated to assess the build-up of organic carbon (OC) stocks in mineral soils and organic surface layers with increasing ice-free period (ca. 15, 60–70, 71–80 and 110–140 years). Mature soils outside the proglacial area (soil ages > 700 years) served as reference for advanced soil development. All soils were sampled in triplicate per surface age to estimate the variability of soil formation. Different selective dissolution methods were applied to quantify Fe and Al pools with respect to their role for soil organic carbon (SOC) stabilization during initial pedogenesis. The chemical composition of organic matter was characterized by using solid-state CPMAS 13C NMR spectroscopy. Leptosols and Regosols were found in the glacier foreland which showed a high variability of development ranging from morphologically undeveloped to soils forming Ah horizons within 70 years. These different stages of soil development were present at a small scale within the same surface age according to past glacier movements. Particle-size distribution varied between soils of similar age and without chronological trend. These results point to the strong impact of different glacial deposition and subsequent glaciofluvial erosion, which was indicated by buried organic surface layers, on soil formation. In general, we found a rapid accumulation of OC in the mineral soils (7.1 g m−2 year−1) and organic surface layers with increasing soil age. Similarly, the amount of poorly crystalline Fe oxides and Al phases increased reflecting the growing potential for SOC stabilization. This was indicated by the strong relationship between SOC stocks and stocks of oxalate soluble Fe and Al. In contrast to strongly increasing quantities, only small changes in the composition of organic matter as well as Fe and Al pools were detected during initial pedogenesis. Fe oxides and inorganic Al phases mainly remained poorly crystalline. Our results point to the concurrent evolution of SOC and poorly crystalline Fe oxides and Al phases with positive feedback mechanisms during initial soil formation. In the Swiss Alpine environment, soil development on silica rich parent material proceeds to Cambisols within at least 700 years as evidenced by the reference soils found outside the proglacial area. They showed indications of weak podzolization as some Fe and Al were translocated downwards. The comparison between the foreland soils and the Cambisols showed decreasing accumulation rates of SOC and pedogenic Fe and Al. This indicates that soil formation processes slow down already after some hundred years or accumulation of Fe and Al increasingly occurs at greater soil depth." @default.
- W2003409616 created "2016-06-24" @default.
- W2003409616 creator A5025732296 @default.
- W2003409616 creator A5056015916 @default.
- W2003409616 creator A5068636244 @default.
- W2003409616 date "2011-06-01" @default.
- W2003409616 modified "2023-10-09" @default.
- W2003409616 title "Concurrent evolution of organic and mineral components during initial soil development after retreat of the Damma glacier, Switzerland" @default.
- W2003409616 cites W1564278553 @default.
- W2003409616 cites W1800837400 @default.
- W2003409616 cites W1964031719 @default.
- W2003409616 cites W1967580390 @default.
- W2003409616 cites W1973907865 @default.
- W2003409616 cites W1977730813 @default.
- W2003409616 cites W1979993929 @default.
- W2003409616 cites W1987153967 @default.
- W2003409616 cites W1989239121 @default.
- W2003409616 cites W1991662480 @default.
- W2003409616 cites W1997008943 @default.
- W2003409616 cites W2002583268 @default.
- W2003409616 cites W2008600690 @default.
- W2003409616 cites W2017010951 @default.
- W2003409616 cites W2019324251 @default.
- W2003409616 cites W2021593506 @default.
- W2003409616 cites W2024903534 @default.
- W2003409616 cites W2028949363 @default.
- W2003409616 cites W2029742834 @default.
- W2003409616 cites W2033345280 @default.
- W2003409616 cites W2033616274 @default.
- W2003409616 cites W2036614065 @default.
- W2003409616 cites W2036774733 @default.
- W2003409616 cites W2038168337 @default.
- W2003409616 cites W2043323753 @default.
- W2003409616 cites W2044788174 @default.
- W2003409616 cites W2046009703 @default.
- W2003409616 cites W2046047329 @default.
- W2003409616 cites W2052976416 @default.
- W2003409616 cites W2060359089 @default.
- W2003409616 cites W2062510319 @default.
- W2003409616 cites W2062881052 @default.
- W2003409616 cites W2068028745 @default.
- W2003409616 cites W2071918617 @default.
- W2003409616 cites W2075436687 @default.
- W2003409616 cites W2078860551 @default.
- W2003409616 cites W2082746960 @default.
- W2003409616 cites W2083161085 @default.
- W2003409616 cites W2088591890 @default.
- W2003409616 cites W2091489118 @default.
- W2003409616 cites W2092190286 @default.
- W2003409616 cites W2092509324 @default.
- W2003409616 cites W2093147295 @default.
- W2003409616 cites W2117481844 @default.
- W2003409616 cites W2120061326 @default.
- W2003409616 cites W2122092375 @default.
- W2003409616 cites W2137675088 @default.
- W2003409616 cites W2145753447 @default.
- W2003409616 cites W2149669193 @default.
- W2003409616 cites W2152632432 @default.
- W2003409616 cites W2159511426 @default.
- W2003409616 cites W2163462941 @default.
- W2003409616 cites W2163474547 @default.
- W2003409616 cites W2166490258 @default.
- W2003409616 cites W2171750684 @default.
- W2003409616 cites W2316462306 @default.
- W2003409616 cites W2604165518 @default.
- W2003409616 cites W4230070458 @default.
- W2003409616 cites W4240716098 @default.
- W2003409616 doi "https://doi.org/10.1016/j.geoderma.2011.04.006" @default.
- W2003409616 hasPublicationYear "2011" @default.
- W2003409616 type Work @default.
- W2003409616 sameAs 2003409616 @default.
- W2003409616 citedByCount "100" @default.
- W2003409616 countsByYear W20034096162012 @default.
- W2003409616 countsByYear W20034096162013 @default.
- W2003409616 countsByYear W20034096162014 @default.
- W2003409616 countsByYear W20034096162015 @default.
- W2003409616 countsByYear W20034096162016 @default.
- W2003409616 countsByYear W20034096162017 @default.
- W2003409616 countsByYear W20034096162018 @default.
- W2003409616 countsByYear W20034096162019 @default.
- W2003409616 countsByYear W20034096162020 @default.
- W2003409616 countsByYear W20034096162021 @default.
- W2003409616 countsByYear W20034096162022 @default.
- W2003409616 countsByYear W20034096162023 @default.
- W2003409616 crossrefType "journal-article" @default.
- W2003409616 hasAuthorship W2003409616A5025732296 @default.
- W2003409616 hasAuthorship W2003409616A5056015916 @default.
- W2003409616 hasAuthorship W2003409616A5068636244 @default.
- W2003409616 hasConcept C100834320 @default.
- W2003409616 hasConcept C107872376 @default.
- W2003409616 hasConcept C114793014 @default.
- W2003409616 hasConcept C116122396 @default.
- W2003409616 hasConcept C127313418 @default.
- W2003409616 hasConcept C156634047 @default.
- W2003409616 hasConcept C158787203 @default.
- W2003409616 hasConcept C159390177 @default.
- W2003409616 hasConcept C159750122 @default.
- W2003409616 hasConcept C178790620 @default.