Matches in SemOpenAlex for { <https://semopenalex.org/work/W2003447441> ?p ?o ?g. }
- W2003447441 endingPage "382" @default.
- W2003447441 startingPage "374" @default.
- W2003447441 abstract "Bark beetles are largely known for their ability to undergo intermittent population eruptions that transform entire landscapes and pose significant economic hardships. However, most species do not undergo outbreaks, and eruptive species usually exert only minor disturbances. Understanding the dynamics of tree-killing noneruptive species can provide insights into how beetles persist at low densities, and how some spatiotemporal patterns of host predisposition may more likely favor breaching eruptive thresholds than others. Elucidating mechanisms behind low-density populations is challenging, however, due to the requirement of long-term monitoring and high degrees of spatial and temporal covariance. We censused more than 2700 trees annually over 7 years, and at the end of 17 years, in a mature red pine plantation. Trees were measured for the presence of bark beetles and wood borers that breed within the primary stem, root weevils that breed in root collars, and bark beetles that breed in basal stems. We quantify the sequence of events that drive this decline syndrome, with the primary emergent pattern being an interaction between below- and above-ground herbivores and their fungal symbionts. This interaction results in an expanding forest gap, with subsequent colonization by early-successional vegetation. Spatial position strongly affects the likelihood of tree mortality. A red pine is initially very likely to avoid attack by tree-killing Ips beetles, but attack becomes increasingly likely as the belowground complex spreads to neighboring trees and eventually make trees susceptible. This system is largely internally driven, as there are strong gap edge, but not stand-edge, effects. Additional stressors, such as drought, can provide an intermittent source of susceptible trees to Ips beetles, and elevated temperature slightly accentuates this effect. New gaps can arise from such trees as they subsequently become epicenters for the full complex of organisms associated with this decline, but this is not common. As Ips populations rise, there is some element of positive feedback, in that the proportion of killed trees that were not first colonized by root organisms increases. This positive feedback is very weak, however, and we propose the slope between beetle population density and reliance on host stress as a quantitative distinction along a gradient from noneruptive through eruptive species. Almost all trees colonized by Ips were subsequently colonized by wood borers, likely a source of negative feedback. We discuss implications to our overall understanding of cross-scale interactions, between-guild interactions, forest declines, and eruptive thresholds." @default.
- W2003447441 created "2016-06-24" @default.
- W2003447441 creator A5014160123 @default.
- W2003447441 creator A5015360299 @default.
- W2003447441 creator A5050238512 @default.
- W2003447441 creator A5055461404 @default.
- W2003447441 creator A5065049951 @default.
- W2003447441 date "2010-01-01" @default.
- W2003447441 modified "2023-10-15" @default.
- W2003447441 title "Predisposition to bark beetle attack by root herbivores and associated pathogens: Roles in forest decline, gap formation, and persistence of endemic bark beetle populations" @default.
- W2003447441 cites W1510588204 @default.
- W2003447441 cites W1763779503 @default.
- W2003447441 cites W1967021755 @default.
- W2003447441 cites W1969023607 @default.
- W2003447441 cites W1988348205 @default.
- W2003447441 cites W2000842730 @default.
- W2003447441 cites W2002035490 @default.
- W2003447441 cites W2010708284 @default.
- W2003447441 cites W2018388905 @default.
- W2003447441 cites W2019055230 @default.
- W2003447441 cites W2021178632 @default.
- W2003447441 cites W2022456049 @default.
- W2003447441 cites W2028630365 @default.
- W2003447441 cites W2033481223 @default.
- W2003447441 cites W2040744138 @default.
- W2003447441 cites W2042515964 @default.
- W2003447441 cites W2047895620 @default.
- W2003447441 cites W2048940598 @default.
- W2003447441 cites W2051520787 @default.
- W2003447441 cites W2066573129 @default.
- W2003447441 cites W2066654086 @default.
- W2003447441 cites W2071593847 @default.
- W2003447441 cites W2089406194 @default.
- W2003447441 cites W2097523802 @default.
- W2003447441 cites W2098598268 @default.
- W2003447441 cites W2110004090 @default.
- W2003447441 cites W2116869457 @default.
- W2003447441 cites W2122582889 @default.
- W2003447441 cites W2125650131 @default.
- W2003447441 cites W2126709772 @default.
- W2003447441 cites W2127770313 @default.
- W2003447441 cites W2127844411 @default.
- W2003447441 cites W2136433097 @default.
- W2003447441 cites W2136445808 @default.
- W2003447441 cites W2148646187 @default.
- W2003447441 cites W2150569514 @default.
- W2003447441 cites W2153726735 @default.
- W2003447441 cites W2153881767 @default.
- W2003447441 cites W2156600512 @default.
- W2003447441 cites W2163541402 @default.
- W2003447441 cites W2163953451 @default.
- W2003447441 cites W2166131069 @default.
- W2003447441 cites W2170851550 @default.
- W2003447441 cites W2171332880 @default.
- W2003447441 cites W2175070720 @default.
- W2003447441 cites W2180770146 @default.
- W2003447441 cites W2469135728 @default.
- W2003447441 cites W4230878588 @default.
- W2003447441 doi "https://doi.org/10.1016/j.foreco.2009.10.032" @default.
- W2003447441 hasPublicationYear "2010" @default.
- W2003447441 type Work @default.
- W2003447441 sameAs 2003447441 @default.
- W2003447441 citedByCount "42" @default.
- W2003447441 countsByYear W20034474412012 @default.
- W2003447441 countsByYear W20034474412013 @default.
- W2003447441 countsByYear W20034474412014 @default.
- W2003447441 countsByYear W20034474412015 @default.
- W2003447441 countsByYear W20034474412016 @default.
- W2003447441 countsByYear W20034474412018 @default.
- W2003447441 countsByYear W20034474412019 @default.
- W2003447441 countsByYear W20034474412020 @default.
- W2003447441 countsByYear W20034474412021 @default.
- W2003447441 countsByYear W20034474412022 @default.
- W2003447441 countsByYear W20034474412023 @default.
- W2003447441 crossrefType "journal-article" @default.
- W2003447441 hasAuthorship W2003447441A5014160123 @default.
- W2003447441 hasAuthorship W2003447441A5015360299 @default.
- W2003447441 hasAuthorship W2003447441A5050238512 @default.
- W2003447441 hasAuthorship W2003447441A5055461404 @default.
- W2003447441 hasAuthorship W2003447441A5065049951 @default.
- W2003447441 hasConcept C133446333 @default.
- W2003447441 hasConcept C144024400 @default.
- W2003447441 hasConcept C149923435 @default.
- W2003447441 hasConcept C150117547 @default.
- W2003447441 hasConcept C18903297 @default.
- W2003447441 hasConcept C2776927270 @default.
- W2003447441 hasConcept C2779751432 @default.
- W2003447441 hasConcept C2908647359 @default.
- W2003447441 hasConcept C46325548 @default.
- W2003447441 hasConcept C86803240 @default.
- W2003447441 hasConcept C91354502 @default.
- W2003447441 hasConceptScore W2003447441C133446333 @default.
- W2003447441 hasConceptScore W2003447441C144024400 @default.
- W2003447441 hasConceptScore W2003447441C149923435 @default.
- W2003447441 hasConceptScore W2003447441C150117547 @default.
- W2003447441 hasConceptScore W2003447441C18903297 @default.
- W2003447441 hasConceptScore W2003447441C2776927270 @default.
- W2003447441 hasConceptScore W2003447441C2779751432 @default.