Matches in SemOpenAlex for { <https://semopenalex.org/work/W2003553251> ?p ?o ?g. }
- W2003553251 endingPage "239" @default.
- W2003553251 startingPage "229" @default.
- W2003553251 abstract "Although Phytophthora cinnamomi is heterothallic, there are few instances of successful crossing in laboratory experiments, and analysis of field populations indicates a clonally reproducing population. In the absence of sexual recombination, the ability to monitor mitochondrial haplotypes may provide an additional tool for identification of clonal isolates and analysis of population structure. To determine mitochondrial haplotypes for this species, seven mitochondrial loci spanning a total of 6,961 bp were sequenced for 62 isolates representing a geographically diverse collection of isolates with A1 and A2 mating type. Three of the regions were primarily intergenic regions between trnG and rns, rns and nad3, and nad6 and cox1, while the remaining loci spanned cox2, nad9, rps10, and secY coding regions and some of the flanking spacer regions. In total, 45 mitochondrial haplotypes were identified (75% of the total isolates examined) with differences due to single-nucleotide polymorphisms (SNPs, totaling 152 bp) and length mutations (17 indels >2 bp representing a total of 910 bp in length). SNPs were the predominate mutation in the four coding regions and their flanking intergenic regions, while both SNPs and length mutations were observed in the three primarily intergenic regions. Some of the length mutations in these regions were due to addition or loss of unique sequences while others were due to variable numbers of subrepeats (in the trnG-rns region, there were 3 to 12 copies of a 24-bp subrepeat sequence that differentiated 17 haplotypes). Network analysis of the haplotypes identified eight primary clades, with the most divergent clade representing primarily A1 isolates collected from Papua New Guinea. The isolate grouping in the network corresponded to mating type and previously published isozyme classifications, with three exceptions: a haplotype representing an A1 mating type (H29) was placed well within the A2 mating type haplotype grouping, one haplotype (H26) had isolates with two isozyme classifications, and one isozyme group was represented on separate network clades, suggesting that recombination has occurred in the past. Among the 62 isolates examined, several examples were identified of isolates recovered from different geographic regions having the same mitochondrial haplotype, suggesting movement of isolates via plant material. Analysis of the data set to determine whether fewer loci could be sequenced to classify haplotypes indicated that the trnG-rns and rns-nad6 loci would classify 87% of the haplotypes identified in this study, while additional sequencing of the nad9 or secY loci would further differentiate the remaining six haplotypes. Based on conservation of gene order in Phytophthora spp., the trnG-rns locus should be useful for mitochondrial haplotype classification in other species, as should the cox2, nad9, rps10, and secY loci. However, the rns-nad3 and nad6-cox1 loci span regions that can have a different gene order in some Phytophthora spp." @default.
- W2003553251 created "2016-06-24" @default.
- W2003553251 creator A5007058893 @default.
- W2003553251 creator A5091781749 @default.
- W2003553251 date "2012-02-01" @default.
- W2003553251 modified "2023-10-16" @default.
- W2003553251 title "Mitochondrial Haplotype Analysis for Differentiation of Isolates of <i>Phytophthora cinnamomi</i>" @default.
- W2003553251 cites W1967888169 @default.
- W2003553251 cites W1971992828 @default.
- W2003553251 cites W1972841974 @default.
- W2003553251 cites W1973696124 @default.
- W2003553251 cites W1979269423 @default.
- W2003553251 cites W1984286759 @default.
- W2003553251 cites W1996527807 @default.
- W2003553251 cites W2015900210 @default.
- W2003553251 cites W2017847297 @default.
- W2003553251 cites W2023607473 @default.
- W2003553251 cites W2032424288 @default.
- W2003553251 cites W2032889462 @default.
- W2003553251 cites W2035194920 @default.
- W2003553251 cites W2039084151 @default.
- W2003553251 cites W2042507427 @default.
- W2003553251 cites W2049539346 @default.
- W2003553251 cites W2054190729 @default.
- W2003553251 cites W2054490789 @default.
- W2003553251 cites W2055298722 @default.
- W2003553251 cites W2061792332 @default.
- W2003553251 cites W2062896114 @default.
- W2003553251 cites W2075010896 @default.
- W2003553251 cites W2078357950 @default.
- W2003553251 cites W2078447828 @default.
- W2003553251 cites W2091515715 @default.
- W2003553251 cites W2096420865 @default.
- W2003553251 cites W2096749924 @default.
- W2003553251 cites W2103056606 @default.
- W2003553251 cites W2103072823 @default.
- W2003553251 cites W2106222301 @default.
- W2003553251 cites W2118907191 @default.
- W2003553251 cites W2120352009 @default.
- W2003553251 cites W2120611093 @default.
- W2003553251 cites W2126420548 @default.
- W2003553251 cites W2128977850 @default.
- W2003553251 cites W2132458606 @default.
- W2003553251 cites W2132670986 @default.
- W2003553251 cites W2139060665 @default.
- W2003553251 cites W2140636175 @default.
- W2003553251 cites W2141355227 @default.
- W2003553251 cites W2154845780 @default.
- W2003553251 cites W2155792151 @default.
- W2003553251 cites W2166836740 @default.
- W2003553251 cites W2170963831 @default.
- W2003553251 cites W4249125022 @default.
- W2003553251 cites W4250487258 @default.
- W2003553251 doi "https://doi.org/10.1094/phyto-04-11-0115" @default.
- W2003553251 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22066674" @default.
- W2003553251 hasPublicationYear "2012" @default.
- W2003553251 type Work @default.
- W2003553251 sameAs 2003553251 @default.
- W2003553251 citedByCount "37" @default.
- W2003553251 countsByYear W20035532512012 @default.
- W2003553251 countsByYear W20035532512013 @default.
- W2003553251 countsByYear W20035532512014 @default.
- W2003553251 countsByYear W20035532512015 @default.
- W2003553251 countsByYear W20035532512016 @default.
- W2003553251 countsByYear W20035532512017 @default.
- W2003553251 countsByYear W20035532512018 @default.
- W2003553251 countsByYear W20035532512019 @default.
- W2003553251 countsByYear W20035532512020 @default.
- W2003553251 countsByYear W20035532512021 @default.
- W2003553251 countsByYear W20035532512022 @default.
- W2003553251 countsByYear W20035532512023 @default.
- W2003553251 crossrefType "journal-article" @default.
- W2003553251 hasAuthorship W2003553251A5007058893 @default.
- W2003553251 hasAuthorship W2003553251A5091781749 @default.
- W2003553251 hasBestOaLocation W20035532511 @default.
- W2003553251 hasConcept C104317684 @default.
- W2003553251 hasConcept C119054055 @default.
- W2003553251 hasConcept C135763542 @default.
- W2003553251 hasConcept C141231307 @default.
- W2003553251 hasConcept C144024400 @default.
- W2003553251 hasConcept C149923435 @default.
- W2003553251 hasConcept C153209595 @default.
- W2003553251 hasConcept C195139083 @default.
- W2003553251 hasConcept C197754878 @default.
- W2003553251 hasConcept C24586158 @default.
- W2003553251 hasConcept C2908647359 @default.
- W2003553251 hasConcept C54355233 @default.
- W2003553251 hasConcept C61053724 @default.
- W2003553251 hasConcept C86803240 @default.
- W2003553251 hasConcept C91779695 @default.
- W2003553251 hasConceptScore W2003553251C104317684 @default.
- W2003553251 hasConceptScore W2003553251C119054055 @default.
- W2003553251 hasConceptScore W2003553251C135763542 @default.
- W2003553251 hasConceptScore W2003553251C141231307 @default.
- W2003553251 hasConceptScore W2003553251C144024400 @default.
- W2003553251 hasConceptScore W2003553251C149923435 @default.
- W2003553251 hasConceptScore W2003553251C153209595 @default.
- W2003553251 hasConceptScore W2003553251C195139083 @default.