Matches in SemOpenAlex for { <https://semopenalex.org/work/W2003647710> ?p ?o ?g. }
- W2003647710 endingPage "3366" @default.
- W2003647710 startingPage "3351" @default.
- W2003647710 abstract "We study operators that are generalizations of the classical Riemann–Liouville fractional integral, and of the Riemann–Liouville and Caputo fractional derivatives. A useful formula relating the generalized fractional derivatives is proved, as well as three relations of fractional integration by parts that change the parameter set of the given operator into its dual. Such results are explored in the context of dynamic optimization, by considering problems of the calculus of variations with general fractional operators. Necessary optimality conditions of Euler–Lagrange type and natural boundary conditions for unconstrained and constrained problems are investigated. Interesting results are obtained even in the particular case when the generalized operators are reduced to be the standard fractional derivatives in the sense of Riemann–Liouville or Caputo. As an application we provide a class of variational problems with an arbitrary kernel that give answer to the important coherence embedding problem. Illustrative optimization problems are considered." @default.
- W2003647710 created "2016-06-24" @default.
- W2003647710 creator A5057131265 @default.
- W2003647710 creator A5076441274 @default.
- W2003647710 creator A5078176392 @default.
- W2003647710 date "2012-11-01" @default.
- W2003647710 modified "2023-10-18" @default.
- W2003647710 title "Generalized fractional calculus with applications to the calculus of variations" @default.
- W2003647710 cites W1602247071 @default.
- W2003647710 cites W1645793582 @default.
- W2003647710 cites W1980410947 @default.
- W2003647710 cites W1993289879 @default.
- W2003647710 cites W1998982154 @default.
- W2003647710 cites W2000813003 @default.
- W2003647710 cites W2015882123 @default.
- W2003647710 cites W2027870450 @default.
- W2003647710 cites W2036756869 @default.
- W2003647710 cites W2052043228 @default.
- W2003647710 cites W2054547706 @default.
- W2003647710 cites W2062339046 @default.
- W2003647710 cites W2066556713 @default.
- W2003647710 cites W2067809350 @default.
- W2003647710 cites W2068345729 @default.
- W2003647710 cites W2071593170 @default.
- W2003647710 cites W2077430350 @default.
- W2003647710 cites W2079820319 @default.
- W2003647710 cites W2080797270 @default.
- W2003647710 cites W2095312525 @default.
- W2003647710 cites W2141961077 @default.
- W2003647710 cites W2171017179 @default.
- W2003647710 cites W2792006822 @default.
- W2003647710 cites W2963703621 @default.
- W2003647710 cites W3099055406 @default.
- W2003647710 cites W3102894372 @default.
- W2003647710 cites W3104377047 @default.
- W2003647710 cites W3105377974 @default.
- W2003647710 cites W3147326347 @default.
- W2003647710 doi "https://doi.org/10.1016/j.camwa.2012.01.073" @default.
- W2003647710 hasPublicationYear "2012" @default.
- W2003647710 type Work @default.
- W2003647710 sameAs 2003647710 @default.
- W2003647710 citedByCount "53" @default.
- W2003647710 countsByYear W20036477102012 @default.
- W2003647710 countsByYear W20036477102013 @default.
- W2003647710 countsByYear W20036477102014 @default.
- W2003647710 countsByYear W20036477102015 @default.
- W2003647710 countsByYear W20036477102017 @default.
- W2003647710 countsByYear W20036477102018 @default.
- W2003647710 countsByYear W20036477102019 @default.
- W2003647710 countsByYear W20036477102020 @default.
- W2003647710 countsByYear W20036477102021 @default.
- W2003647710 countsByYear W20036477102022 @default.
- W2003647710 countsByYear W20036477102023 @default.
- W2003647710 crossrefType "journal-article" @default.
- W2003647710 hasAuthorship W2003647710A5057131265 @default.
- W2003647710 hasAuthorship W2003647710A5076441274 @default.
- W2003647710 hasAuthorship W2003647710A5078176392 @default.
- W2003647710 hasBestOaLocation W20036477101 @default.
- W2003647710 hasConcept C104317684 @default.
- W2003647710 hasConcept C117312493 @default.
- W2003647710 hasConcept C127413603 @default.
- W2003647710 hasConcept C133731056 @default.
- W2003647710 hasConcept C134306372 @default.
- W2003647710 hasConcept C151730666 @default.
- W2003647710 hasConcept C154249771 @default.
- W2003647710 hasConcept C158448853 @default.
- W2003647710 hasConcept C17020691 @default.
- W2003647710 hasConcept C185592680 @default.
- W2003647710 hasConcept C18903297 @default.
- W2003647710 hasConcept C199343813 @default.
- W2003647710 hasConcept C202444582 @default.
- W2003647710 hasConcept C2777299769 @default.
- W2003647710 hasConcept C2777686260 @default.
- W2003647710 hasConcept C2779343474 @default.
- W2003647710 hasConcept C28826006 @default.
- W2003647710 hasConcept C33695381 @default.
- W2003647710 hasConcept C33923547 @default.
- W2003647710 hasConcept C55493867 @default.
- W2003647710 hasConcept C71924100 @default.
- W2003647710 hasConcept C86339819 @default.
- W2003647710 hasConcept C86803240 @default.
- W2003647710 hasConcept C97985569 @default.
- W2003647710 hasConceptScore W2003647710C104317684 @default.
- W2003647710 hasConceptScore W2003647710C117312493 @default.
- W2003647710 hasConceptScore W2003647710C127413603 @default.
- W2003647710 hasConceptScore W2003647710C133731056 @default.
- W2003647710 hasConceptScore W2003647710C134306372 @default.
- W2003647710 hasConceptScore W2003647710C151730666 @default.
- W2003647710 hasConceptScore W2003647710C154249771 @default.
- W2003647710 hasConceptScore W2003647710C158448853 @default.
- W2003647710 hasConceptScore W2003647710C17020691 @default.
- W2003647710 hasConceptScore W2003647710C185592680 @default.
- W2003647710 hasConceptScore W2003647710C18903297 @default.
- W2003647710 hasConceptScore W2003647710C199343813 @default.
- W2003647710 hasConceptScore W2003647710C202444582 @default.
- W2003647710 hasConceptScore W2003647710C2777299769 @default.
- W2003647710 hasConceptScore W2003647710C2777686260 @default.
- W2003647710 hasConceptScore W2003647710C2779343474 @default.