Matches in SemOpenAlex for { <https://semopenalex.org/work/W2003669963> ?p ?o ?g. }
- W2003669963 endingPage "68" @default.
- W2003669963 startingPage "59" @default.
- W2003669963 abstract "One of the most effective numerical techniques for the solution of trajectory optimization and optimal control problems is the direct transcription method. This approach combines a nonlinear programming algorithm with discretization of the trajectory dynamics. The resulting mathematical programming problem is characterized by matrices that are large and sparse. Constraints on the path of the trajectory are then treated as algebraic inequalities to be satisfied by the nonlinear program. This paper describes a nonlinear programming algorithm that exploits the matrix sparsity produced by the transcription formulation. Numerical experience is reported for trajectories with both state and control variable equality and inequality path constraints. T is well known that the solution of an optimal control or trajectory optimization problem can be posed as the solution of a two-point boundary value problem. This problem requires solving a set of nonlinear ordinary differential equations; the first set defined by the vehicle dynamics and the second set (of adjoint differential equations) by the optimality conditions. Boundary conditions are imposed from the problem requirements as well as the optimality criteria. By discretizing the dynamic variables, this boundary value problem can be reduced to the solution of a set of nonlinear algebraic equations. This approach has been successfully utilized1'5 for applications without path constraints. Since the approach requires adjoint equations, it is subject to a number of difficulties. First, the adjoint equations are often very nonlinear and cumbersome to obtain for complex vehicle dynamics, especially when thrust and aerodynamic forces are given by tabular data. Second, the iterative procedure requires an initial guess for the adjoint variables, and this can be quite difficult because they lack a physical interpretation. Third, convergence of the iterations is often quite sensitive to the accuracy of the adjoint guess. Finally, the adjoint variables may be discontinuous when the solution enters or leaves an inequality path constraint. Difficulties associated with adjoint equations are avoided by the direct transcription or collocation methods.6'10 In this approach, the dynamic equations are discretized, and the optimal control problem is transformed into a nonlinear program, which can be solved directly. The nonlinear programming problem is large and sparse and a method for solving it is presented in Ref. 7. This paper extends the method of Ref. 7 to efficiently handle inequality constraints and presents a nonlinear programming algorithm designed to exploit the properties of the problem that results from direct transcription of the trajectory optimization application." @default.
- W2003669963 created "2016-06-24" @default.
- W2003669963 creator A5001275415 @default.
- W2003669963 creator A5011558977 @default.
- W2003669963 date "1993-01-01" @default.
- W2003669963 modified "2023-09-26" @default.
- W2003669963 title "Path-constrained trajectory optimization using sparse sequential quadratic programming" @default.
- W2003669963 cites W2000354449 @default.
- W2003669963 cites W2047929780 @default.
- W2003669963 cites W2053049052 @default.
- W2003669963 cites W2066490822 @default.
- W2003669963 cites W2080132051 @default.
- W2003669963 cites W2080612824 @default.
- W2003669963 cites W2091836778 @default.
- W2003669963 cites W2157570139 @default.
- W2003669963 cites W2169035848 @default.
- W2003669963 cites W3178555742 @default.
- W2003669963 doi "https://doi.org/10.2514/3.11428" @default.
- W2003669963 hasPublicationYear "1993" @default.
- W2003669963 type Work @default.
- W2003669963 sameAs 2003669963 @default.
- W2003669963 citedByCount "124" @default.
- W2003669963 countsByYear W20036699632013 @default.
- W2003669963 countsByYear W20036699632014 @default.
- W2003669963 countsByYear W20036699632015 @default.
- W2003669963 countsByYear W20036699632016 @default.
- W2003669963 countsByYear W20036699632017 @default.
- W2003669963 countsByYear W20036699632018 @default.
- W2003669963 countsByYear W20036699632019 @default.
- W2003669963 countsByYear W20036699632020 @default.
- W2003669963 countsByYear W20036699632021 @default.
- W2003669963 countsByYear W20036699632022 @default.
- W2003669963 countsByYear W20036699632023 @default.
- W2003669963 crossrefType "journal-article" @default.
- W2003669963 hasAuthorship W2003669963A5001275415 @default.
- W2003669963 hasAuthorship W2003669963A5011558977 @default.
- W2003669963 hasConcept C111397411 @default.
- W2003669963 hasConcept C112680207 @default.
- W2003669963 hasConcept C11413529 @default.
- W2003669963 hasConcept C121332964 @default.
- W2003669963 hasConcept C126255220 @default.
- W2003669963 hasConcept C1276947 @default.
- W2003669963 hasConcept C129844170 @default.
- W2003669963 hasConcept C13662910 @default.
- W2003669963 hasConcept C154945302 @default.
- W2003669963 hasConcept C157972887 @default.
- W2003669963 hasConcept C173246807 @default.
- W2003669963 hasConcept C198927703 @default.
- W2003669963 hasConcept C199360897 @default.
- W2003669963 hasConcept C2524010 @default.
- W2003669963 hasConcept C2775924081 @default.
- W2003669963 hasConcept C2777735758 @default.
- W2003669963 hasConcept C33923547 @default.
- W2003669963 hasConcept C41008148 @default.
- W2003669963 hasConcept C47446073 @default.
- W2003669963 hasConcept C65148998 @default.
- W2003669963 hasConcept C81845259 @default.
- W2003669963 hasConcept C91575142 @default.
- W2003669963 hasConceptScore W2003669963C111397411 @default.
- W2003669963 hasConceptScore W2003669963C112680207 @default.
- W2003669963 hasConceptScore W2003669963C11413529 @default.
- W2003669963 hasConceptScore W2003669963C121332964 @default.
- W2003669963 hasConceptScore W2003669963C126255220 @default.
- W2003669963 hasConceptScore W2003669963C1276947 @default.
- W2003669963 hasConceptScore W2003669963C129844170 @default.
- W2003669963 hasConceptScore W2003669963C13662910 @default.
- W2003669963 hasConceptScore W2003669963C154945302 @default.
- W2003669963 hasConceptScore W2003669963C157972887 @default.
- W2003669963 hasConceptScore W2003669963C173246807 @default.
- W2003669963 hasConceptScore W2003669963C198927703 @default.
- W2003669963 hasConceptScore W2003669963C199360897 @default.
- W2003669963 hasConceptScore W2003669963C2524010 @default.
- W2003669963 hasConceptScore W2003669963C2775924081 @default.
- W2003669963 hasConceptScore W2003669963C2777735758 @default.
- W2003669963 hasConceptScore W2003669963C33923547 @default.
- W2003669963 hasConceptScore W2003669963C41008148 @default.
- W2003669963 hasConceptScore W2003669963C47446073 @default.
- W2003669963 hasConceptScore W2003669963C65148998 @default.
- W2003669963 hasConceptScore W2003669963C81845259 @default.
- W2003669963 hasConceptScore W2003669963C91575142 @default.
- W2003669963 hasIssue "1" @default.
- W2003669963 hasLocation W20036699631 @default.
- W2003669963 hasOpenAccess W2003669963 @default.
- W2003669963 hasPrimaryLocation W20036699631 @default.
- W2003669963 hasRelatedWork W1993886527 @default.
- W2003669963 hasRelatedWork W2010155752 @default.
- W2003669963 hasRelatedWork W2052255705 @default.
- W2003669963 hasRelatedWork W2117456051 @default.
- W2003669963 hasRelatedWork W2122983719 @default.
- W2003669963 hasRelatedWork W2128461291 @default.
- W2003669963 hasRelatedWork W2364127131 @default.
- W2003669963 hasRelatedWork W2936403097 @default.
- W2003669963 hasRelatedWork W4211141987 @default.
- W2003669963 hasRelatedWork W165108556 @default.
- W2003669963 hasVolume "16" @default.
- W2003669963 isParatext "false" @default.
- W2003669963 isRetracted "false" @default.
- W2003669963 magId "2003669963" @default.