Matches in SemOpenAlex for { <https://semopenalex.org/work/W2003758148> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2003758148 endingPage "142" @default.
- W2003758148 startingPage "123" @default.
- W2003758148 abstract "We investigate the solutions of vector refinement equations of the form ϕ = ∑ α ∈ Z s a ( α ) ϕ ( M · - α ) , where the vector of functions ϕ = ( ϕ 1 , … , ϕ r ) T is in ( L p ( R s ) ) r , 1 ⩽ p ⩽ ∞ , a ≕ ( a ( α ) ) α ∈ Z s is a finitely supported sequence of r × r matrices called the refinement mask, and M is an s × s integer matrix such that lim n → ∞ M - n = 0 . Associated with the mask a and M is a linear operator Q a defined on ( L p ( R s ) ) r by Q a ψ ≔ ∑ β ∈ Z s a ( β ) ψ ( M · - β ) . The iteration scheme ( Q a n ψ ) n = 1 , 2 , … is called a cascade algorithm (see [D.R. Chen, R.Q. Jia, S.D. Riemenschneider, Convergence of vector subdivision schemes in Sobolev spaces, Appl. Comput. Harmon. Anal. 12 (2002) 128–149; B. Han, The initial functions in a cascade algorithm, in: D.X. Zhou (Ed.), Proceeding of International Conference of Computational Harmonic Analysis in Hong Kong, 2002; B. Han, R.Q. Jia, Multivariate refinement equations and convergence of subdivision schemes, SIAM J. Math. Anal. 29 (1998) 1177–1199; R.Q. Jia, Subdivision schemes in L p spaces, Adv. Comput. Math. 3 (1995) 309–341; R.Q. Jia, S.D. Riemenschneider, D.X. Zhou, Vector subdivision schemes and multiple wavelets, Math. Comp. 67 (1998) 1533–1363; S. Li, Characterization of smoothness of multivariate refinable functions and convergence of cascade algorithms associated with nonhomogeneous refinement equations, Adv. Comput. Math. 20 (2004) 311–331; Q. Sun, Convergence and boundedness of cascade algorithm in Besov space and Triebel–Lizorkin space I, Adv. Math. (China) 29 (2000) 507–526]). Cascade algorithm is an important issue to wavelets analysis and computer graphics. Main results of this paper are related to the convergence and convergence rates of vector cascade algorithm in ( L p ( R s ) ) r ( 1 ⩽ p ⩽ ∞ ) . We give some characterizations on convergence of cascade algorithm and also give estimates on convergence rates of this cascade algorithm with M being isotropic dilation matrix. It is well known that smoothness is a very important property of a multiple refinable function. A characterization of L p ( 1 ⩽ p ⩽ ∞ ) smoothness of multiple refinable functions is also presented when M = qI s × s , where I s × s is the s × s identity matrix, and q ⩾ 2 is an integer. In particular, the smoothness results given in [R.Q. Jia, S.D. Riemenschneider, D.X. Zhou, Smoothness of multiple refinable functions and multiple wavelets, SIAM J. Matrix Anal. Appl. 21 (1999) 1–28] is a special case of this paper." @default.
- W2003758148 created "2016-06-24" @default.
- W2003758148 creator A5081615766 @default.
- W2003758148 date "2005-11-01" @default.
- W2003758148 modified "2023-09-25" @default.
- W2003758148 title "Convergence rates of vector cascade algorithms in <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML altimg=si1.gif overflow=scroll><mml:msub><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msub></mml:math>" @default.
- W2003758148 cites W1492181480 @default.
- W2003758148 cites W1543011038 @default.
- W2003758148 cites W1774981766 @default.
- W2003758148 cites W1966975678 @default.
- W2003758148 cites W1972706755 @default.
- W2003758148 cites W1973578161 @default.
- W2003758148 cites W1979032637 @default.
- W2003758148 cites W1980695038 @default.
- W2003758148 cites W1981425820 @default.
- W2003758148 cites W1986784032 @default.
- W2003758148 cites W1987996534 @default.
- W2003758148 cites W1995668896 @default.
- W2003758148 cites W2001560283 @default.
- W2003758148 cites W2017721907 @default.
- W2003758148 cites W2046295663 @default.
- W2003758148 cites W2090234078 @default.
- W2003758148 cites W2090953263 @default.
- W2003758148 cites W2092896986 @default.
- W2003758148 cites W2161830793 @default.
- W2003758148 cites W2322815526 @default.
- W2003758148 cites W254413301 @default.
- W2003758148 doi "https://doi.org/10.1016/j.jat.2005.07.010" @default.
- W2003758148 hasPublicationYear "2005" @default.
- W2003758148 type Work @default.
- W2003758148 sameAs 2003758148 @default.
- W2003758148 citedByCount "11" @default.
- W2003758148 countsByYear W20037581482017 @default.
- W2003758148 crossrefType "journal-article" @default.
- W2003758148 hasAuthorship W2003758148A5081615766 @default.
- W2003758148 hasConcept C11413529 @default.
- W2003758148 hasConcept C114614502 @default.
- W2003758148 hasConcept C118615104 @default.
- W2003758148 hasConcept C134306372 @default.
- W2003758148 hasConcept C143392562 @default.
- W2003758148 hasConcept C162324750 @default.
- W2003758148 hasConcept C166957645 @default.
- W2003758148 hasConcept C2777303404 @default.
- W2003758148 hasConcept C33923547 @default.
- W2003758148 hasConcept C50522688 @default.
- W2003758148 hasConcept C95457728 @default.
- W2003758148 hasConcept C99730327 @default.
- W2003758148 hasConceptScore W2003758148C11413529 @default.
- W2003758148 hasConceptScore W2003758148C114614502 @default.
- W2003758148 hasConceptScore W2003758148C118615104 @default.
- W2003758148 hasConceptScore W2003758148C134306372 @default.
- W2003758148 hasConceptScore W2003758148C143392562 @default.
- W2003758148 hasConceptScore W2003758148C162324750 @default.
- W2003758148 hasConceptScore W2003758148C166957645 @default.
- W2003758148 hasConceptScore W2003758148C2777303404 @default.
- W2003758148 hasConceptScore W2003758148C33923547 @default.
- W2003758148 hasConceptScore W2003758148C50522688 @default.
- W2003758148 hasConceptScore W2003758148C95457728 @default.
- W2003758148 hasConceptScore W2003758148C99730327 @default.
- W2003758148 hasIssue "1" @default.
- W2003758148 hasLocation W20037581481 @default.
- W2003758148 hasOpenAccess W2003758148 @default.
- W2003758148 hasPrimaryLocation W20037581481 @default.
- W2003758148 hasRelatedWork W1969749709 @default.
- W2003758148 hasRelatedWork W1975855634 @default.
- W2003758148 hasRelatedWork W2028622307 @default.
- W2003758148 hasRelatedWork W2045403474 @default.
- W2003758148 hasRelatedWork W2077949955 @default.
- W2003758148 hasRelatedWork W2132046689 @default.
- W2003758148 hasRelatedWork W2166193462 @default.
- W2003758148 hasRelatedWork W3088059121 @default.
- W2003758148 hasRelatedWork W3103129013 @default.
- W2003758148 hasRelatedWork W4244017238 @default.
- W2003758148 hasVolume "137" @default.
- W2003758148 isParatext "false" @default.
- W2003758148 isRetracted "false" @default.
- W2003758148 magId "2003758148" @default.
- W2003758148 workType "article" @default.