Matches in SemOpenAlex for { <https://semopenalex.org/work/W2003759963> ?p ?o ?g. }
- W2003759963 endingPage "742" @default.
- W2003759963 startingPage "733" @default.
- W2003759963 abstract "ABSTRACT Aim Distribution modelling relates sparse data on species occurrence or abundance to environmental information to predict the population of a species at any point in space. Recently, the importance of spatial autocorrelation in distributions has been recognized. Spatial autocorrelation can be categorized as exogenous (stemming from autocorrelation in the underlying variables) or endogenous (stemming from activities of the organism itself, such as dispersal). Typically, one asks whether spatial models explain additional variability (endogenous) in comparison to a fully specified habitat model. We turned this question around and asked: can habitat models explain additional variation when spatial structure is accounted for in a fully specified spatially explicit model? The aim was to find out to what degree habitat models may be inadvertently capturing spatial structure rather than true explanatory mechanisms. Location We used data from 190 species of the North American Breeding Bird Survey covering the conterminous United States and southern Canada. Methods We built 13 different models on 190 bird species using regression trees. Our habitat‐based models used climate and landcover variables as independent variables. We also used random variables and simulated ranges to validate our results. The two spatially explicit models included only geographical coordinates or a contagion term as independent variables. As another angle on the question of mechanism vs. spatial structure we pitted a model using related bird species as predictors against a model using randomly selected bird species. Results The spatially explicit models outperformed the traditional habitat models and the random predictor species outperformed the related predictor species. In addition, environmental variables produced a substantial R 2 in predicting artificial ranges. Main conclusions We conclude that many explanatory variables with suitable spatial structure can work well in species distribution models. The predictive power of environmental variables is not necessarily mechanistic, and spatial interpolation can outperform environmental explanatory variables." @default.
- W2003759963 created "2016-06-24" @default.
- W2003759963 creator A5000376962 @default.
- W2003759963 creator A5003801884 @default.
- W2003759963 date "2007-05-15" @default.
- W2003759963 modified "2023-10-09" @default.
- W2003759963 title "Can niche‐based distribution models outperform spatial interpolation?" @default.
- W2003759963 cites W1552647955 @default.
- W2003759963 cites W1710732412 @default.
- W2003759963 cites W1766029576 @default.
- W2003759963 cites W1967075719 @default.
- W2003759963 cites W1974379686 @default.
- W2003759963 cites W2000297055 @default.
- W2003759963 cites W2010126995 @default.
- W2003759963 cites W2026972010 @default.
- W2003759963 cites W2037223925 @default.
- W2003759963 cites W2041721328 @default.
- W2003759963 cites W2045594836 @default.
- W2003759963 cites W2055394180 @default.
- W2003759963 cites W2058293915 @default.
- W2003759963 cites W2067088251 @default.
- W2003759963 cites W2070190147 @default.
- W2003759963 cites W2080978149 @default.
- W2003759963 cites W2081959386 @default.
- W2003759963 cites W2101299555 @default.
- W2003759963 cites W2111954076 @default.
- W2003759963 cites W2112315008 @default.
- W2003759963 cites W2123337039 @default.
- W2003759963 cites W2125340357 @default.
- W2003759963 cites W2131687730 @default.
- W2003759963 cites W2138788795 @default.
- W2003759963 cites W2149507322 @default.
- W2003759963 cites W2155475871 @default.
- W2003759963 cites W2177812483 @default.
- W2003759963 cites W2179545855 @default.
- W2003759963 cites W2179879290 @default.
- W2003759963 cites W2317415246 @default.
- W2003759963 cites W4231168459 @default.
- W2003759963 cites W4243871771 @default.
- W2003759963 cites W4244506605 @default.
- W2003759963 doi "https://doi.org/10.1111/j.1466-8238.2007.00331.x" @default.
- W2003759963 hasPublicationYear "2007" @default.
- W2003759963 type Work @default.
- W2003759963 sameAs 2003759963 @default.
- W2003759963 citedByCount "174" @default.
- W2003759963 countsByYear W20037599632012 @default.
- W2003759963 countsByYear W20037599632013 @default.
- W2003759963 countsByYear W20037599632014 @default.
- W2003759963 countsByYear W20037599632015 @default.
- W2003759963 countsByYear W20037599632016 @default.
- W2003759963 countsByYear W20037599632017 @default.
- W2003759963 countsByYear W20037599632018 @default.
- W2003759963 countsByYear W20037599632019 @default.
- W2003759963 countsByYear W20037599632020 @default.
- W2003759963 countsByYear W20037599632021 @default.
- W2003759963 countsByYear W20037599632022 @default.
- W2003759963 countsByYear W20037599632023 @default.
- W2003759963 crossrefType "journal-article" @default.
- W2003759963 hasAuthorship W2003759963A5000376962 @default.
- W2003759963 hasAuthorship W2003759963A5003801884 @default.
- W2003759963 hasConcept C102715595 @default.
- W2003759963 hasConcept C103215972 @default.
- W2003759963 hasConcept C105795698 @default.
- W2003759963 hasConcept C132124917 @default.
- W2003759963 hasConcept C144024400 @default.
- W2003759963 hasConcept C149923435 @default.
- W2003759963 hasConcept C153991713 @default.
- W2003759963 hasConcept C158709400 @default.
- W2003759963 hasConcept C159620131 @default.
- W2003759963 hasConcept C185933670 @default.
- W2003759963 hasConcept C18903297 @default.
- W2003759963 hasConcept C205649164 @default.
- W2003759963 hasConcept C2776509573 @default.
- W2003759963 hasConcept C2908647359 @default.
- W2003759963 hasConcept C33923547 @default.
- W2003759963 hasConcept C47559259 @default.
- W2003759963 hasConcept C77077793 @default.
- W2003759963 hasConcept C86803240 @default.
- W2003759963 hasConceptScore W2003759963C102715595 @default.
- W2003759963 hasConceptScore W2003759963C103215972 @default.
- W2003759963 hasConceptScore W2003759963C105795698 @default.
- W2003759963 hasConceptScore W2003759963C132124917 @default.
- W2003759963 hasConceptScore W2003759963C144024400 @default.
- W2003759963 hasConceptScore W2003759963C149923435 @default.
- W2003759963 hasConceptScore W2003759963C153991713 @default.
- W2003759963 hasConceptScore W2003759963C158709400 @default.
- W2003759963 hasConceptScore W2003759963C159620131 @default.
- W2003759963 hasConceptScore W2003759963C185933670 @default.
- W2003759963 hasConceptScore W2003759963C18903297 @default.
- W2003759963 hasConceptScore W2003759963C205649164 @default.
- W2003759963 hasConceptScore W2003759963C2776509573 @default.
- W2003759963 hasConceptScore W2003759963C2908647359 @default.
- W2003759963 hasConceptScore W2003759963C33923547 @default.
- W2003759963 hasConceptScore W2003759963C47559259 @default.
- W2003759963 hasConceptScore W2003759963C77077793 @default.
- W2003759963 hasConceptScore W2003759963C86803240 @default.
- W2003759963 hasIssue "6" @default.
- W2003759963 hasLocation W20037599631 @default.