Matches in SemOpenAlex for { <https://semopenalex.org/work/W2003804833> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2003804833 endingPage "4536" @default.
- W2003804833 startingPage "4523" @default.
- W2003804833 abstract "High-thermal performance PWR (pressurized water reactor) spacer grids require both low pressure loss, high wall heat transfer coefficient and high critical heat flux (CHF) properties. A further detailed understanding of the main physical phenomena (wall boiling, entrainment of bubbles in the wakes, recondensation) is needed and can be reached by numerical simulation. In the field of fuel assembly analysis or design by means of CFD codes, the overwhelming majority of the studies are carried out using two-equation eddy viscosity models (EVM) as turbulence model, especially the standard K − ɛ model, while the use of Reynolds Stress Transport Models (RSTMs) remains exceptional. In contrast, extensive testing and application over the past three decades have revealed a number of shortcomings and deficiencies in eddy viscosity models. Indeed, the K − ɛ model is totally blind to flow rotation, e.g., in the presence of swirls. This aspect is crucial for the simulation of a hot channel in a fuel assembly. In fact, the mixing vanes of the spacer grids generate swirls in the coolant water, which enhances the heat transfer from the rods to the coolant in the hot channels and thus limits boiling. In this work, all the models are implemented in NEPTUNE_CFD, a three dimensional multi-fluid code developed especially for nuclear reactor applications, in the framework of the NEPTUNE project (EDF, CEA, AREVA-NP, IRSN). In a previous work, we have evaluated computational fluid dynamics results obtained with RSTM against single-phase liquid water tests equipped with a mixing vane and against two-phase boiling cases (DEBORA-tube and ASU-annular channel tests). In the present work, a geometry closer to actual fuel assemblies is considered. It consists of a rectangular test section in which a 2 × 2 rod bundle, equipped with a simple spacer grid with mixing vanes, is inserted. The influence of the turbulence model on target variables supposed to be related to CHF limitation is discussed. Numerical investigations on the optimised angle of mixing vanes are addressed. In addition, the impact of a detailed description of the bubble size distribution on the boiling flow with realistic geometry is addressed. The relative importance of the correct description of this modelling of polydisperse bubble size is due to the dependency of (i) main hydrodynamic forces, like drag, as well as of (ii) inter-phase transfer area with respect to the individual bubble size. The effects of the phenomena of coalescence or break-up and the main influences of mean bubble diameter on the void fraction and fluid velocity in the vicinity of the grids are underlined. The study of this 2 × 2 rod bundle case is a further step towards a physically reliable local CFD modelling of the two-phase boiling flow in real fuel assemblies, including spacers grid structures." @default.
- W2003804833 created "2016-06-24" @default.
- W2003804833 creator A5007418043 @default.
- W2003804833 creator A5060028162 @default.
- W2003804833 creator A5068018152 @default.
- W2003804833 creator A5076205026 @default.
- W2003804833 date "2011-11-01" @default.
- W2003804833 modified "2023-10-17" @default.
- W2003804833 title "Combined evaluation of second order turbulence model and polydispersion model for two-phase boiling flow and application to fuel assembly analysis" @default.
- W2003804833 cites W1562761874 @default.
- W2003804833 cites W1964924231 @default.
- W2003804833 cites W2032518882 @default.
- W2003804833 cites W2033951304 @default.
- W2003804833 cites W2037927061 @default.
- W2003804833 cites W2042566711 @default.
- W2003804833 cites W2055514032 @default.
- W2003804833 cites W2070768990 @default.
- W2003804833 cites W2072049877 @default.
- W2003804833 cites W2079605502 @default.
- W2003804833 cites W2085413747 @default.
- W2003804833 cites W2085925807 @default.
- W2003804833 cites W2092981227 @default.
- W2003804833 cites W2104028393 @default.
- W2003804833 cites W2110635249 @default.
- W2003804833 cites W2119823877 @default.
- W2003804833 doi "https://doi.org/10.1016/j.nucengdes.2010.12.028" @default.
- W2003804833 hasPublicationYear "2011" @default.
- W2003804833 type Work @default.
- W2003804833 sameAs 2003804833 @default.
- W2003804833 citedByCount "20" @default.
- W2003804833 countsByYear W20038048332014 @default.
- W2003804833 countsByYear W20038048332015 @default.
- W2003804833 countsByYear W20038048332016 @default.
- W2003804833 countsByYear W20038048332017 @default.
- W2003804833 countsByYear W20038048332018 @default.
- W2003804833 countsByYear W20038048332019 @default.
- W2003804833 countsByYear W20038048332022 @default.
- W2003804833 countsByYear W20038048332023 @default.
- W2003804833 crossrefType "journal-article" @default.
- W2003804833 hasAuthorship W2003804833A5007418043 @default.
- W2003804833 hasAuthorship W2003804833A5060028162 @default.
- W2003804833 hasAuthorship W2003804833A5068018152 @default.
- W2003804833 hasAuthorship W2003804833A5076205026 @default.
- W2003804833 hasConcept C121332964 @default.
- W2003804833 hasConcept C121448008 @default.
- W2003804833 hasConcept C127413603 @default.
- W2003804833 hasConcept C147196274 @default.
- W2003804833 hasConcept C157777378 @default.
- W2003804833 hasConcept C159188206 @default.
- W2003804833 hasConcept C1633027 @default.
- W2003804833 hasConcept C174379495 @default.
- W2003804833 hasConcept C192562407 @default.
- W2003804833 hasConcept C196558001 @default.
- W2003804833 hasConcept C204573209 @default.
- W2003804833 hasConcept C50517652 @default.
- W2003804833 hasConcept C57879066 @default.
- W2003804833 hasConcept C78519656 @default.
- W2003804833 hasConcept C91914117 @default.
- W2003804833 hasConcept C97355855 @default.
- W2003804833 hasConceptScore W2003804833C121332964 @default.
- W2003804833 hasConceptScore W2003804833C121448008 @default.
- W2003804833 hasConceptScore W2003804833C127413603 @default.
- W2003804833 hasConceptScore W2003804833C147196274 @default.
- W2003804833 hasConceptScore W2003804833C157777378 @default.
- W2003804833 hasConceptScore W2003804833C159188206 @default.
- W2003804833 hasConceptScore W2003804833C1633027 @default.
- W2003804833 hasConceptScore W2003804833C174379495 @default.
- W2003804833 hasConceptScore W2003804833C192562407 @default.
- W2003804833 hasConceptScore W2003804833C196558001 @default.
- W2003804833 hasConceptScore W2003804833C204573209 @default.
- W2003804833 hasConceptScore W2003804833C50517652 @default.
- W2003804833 hasConceptScore W2003804833C57879066 @default.
- W2003804833 hasConceptScore W2003804833C78519656 @default.
- W2003804833 hasConceptScore W2003804833C91914117 @default.
- W2003804833 hasConceptScore W2003804833C97355855 @default.
- W2003804833 hasIssue "11" @default.
- W2003804833 hasLocation W20038048331 @default.
- W2003804833 hasOpenAccess W2003804833 @default.
- W2003804833 hasPrimaryLocation W20038048331 @default.
- W2003804833 hasRelatedWork W1602795952 @default.
- W2003804833 hasRelatedWork W1869696146 @default.
- W2003804833 hasRelatedWork W1965398802 @default.
- W2003804833 hasRelatedWork W2400245843 @default.
- W2003804833 hasRelatedWork W2421924825 @default.
- W2003804833 hasRelatedWork W2500887367 @default.
- W2003804833 hasRelatedWork W2904670957 @default.
- W2003804833 hasRelatedWork W2925305938 @default.
- W2003804833 hasRelatedWork W2982032764 @default.
- W2003804833 hasRelatedWork W3217262436 @default.
- W2003804833 hasVolume "241" @default.
- W2003804833 isParatext "false" @default.
- W2003804833 isRetracted "false" @default.
- W2003804833 magId "2003804833" @default.
- W2003804833 workType "article" @default.