Matches in SemOpenAlex for { <https://semopenalex.org/work/W2003804932> ?p ?o ?g. }
- W2003804932 endingPage "5413" @default.
- W2003804932 startingPage "5405" @default.
- W2003804932 abstract "Membrane fusion at vacuoles requires a consecutive action of the HOPS tethering complex, which is recruited by the Rab GTPase Ypt7, and vacuolar SNAREs to drive membrane fusion. It is assumed that the Sec1/Munc18-like Vps33 within the HOPS complex is largely responsible for SNARE chaperoning. Here, we present direct evidence for HOPS binding to SNAREs and the Habc domain of the Vam3 SNARE protein, which may explain its function during fusion. We show that HOPS interacts strongly with the Vam3 Habc domain, assembled Q-SNAREs, and the R-SNARE Ykt6, but not the Q-SNARE Vti1 or the Vam3 SNARE domain. Electron microscopy combined with Nanogold labeling reveals that the binding sites for vacuolar SNAREs and the Habc domain are located in the large head of the HOPS complex, where Vps16 and Vps33 have been identified before. Competition experiments suggest that HOPS bound to the Habc domain can still interact with assembled Q-SNAREs, whereas Q-SNARE binding prevents recognition of the Habc domain. In agreement, membranes carrying Vam3ΔHabc fuse poorly unless an excess of HOPS is provided. These data suggest that the Habc domain of Vam3 facilitates the assembly of the HOPS/SNARE machinery at fusion sites and thus supports efficient membrane fusion.BackgroundTethering complexes such as HOPS bind SNAREs to coordinate fusion.ResultsHOPS binds the Vam3 Habc domain and the SNARE complex, which is required for membrane fusion.ConclusionBinding of the Vam3 Habc domain prepositions HOPS for optimal fusion support.SignificanceOur data reveal that HOPS coordinates SNARE assembly and fusion via two distinct SNARE binding sites. Membrane fusion at vacuoles requires a consecutive action of the HOPS tethering complex, which is recruited by the Rab GTPase Ypt7, and vacuolar SNAREs to drive membrane fusion. It is assumed that the Sec1/Munc18-like Vps33 within the HOPS complex is largely responsible for SNARE chaperoning. Here, we present direct evidence for HOPS binding to SNAREs and the Habc domain of the Vam3 SNARE protein, which may explain its function during fusion. We show that HOPS interacts strongly with the Vam3 Habc domain, assembled Q-SNAREs, and the R-SNARE Ykt6, but not the Q-SNARE Vti1 or the Vam3 SNARE domain. Electron microscopy combined with Nanogold labeling reveals that the binding sites for vacuolar SNAREs and the Habc domain are located in the large head of the HOPS complex, where Vps16 and Vps33 have been identified before. Competition experiments suggest that HOPS bound to the Habc domain can still interact with assembled Q-SNAREs, whereas Q-SNARE binding prevents recognition of the Habc domain. In agreement, membranes carrying Vam3ΔHabc fuse poorly unless an excess of HOPS is provided. These data suggest that the Habc domain of Vam3 facilitates the assembly of the HOPS/SNARE machinery at fusion sites and thus supports efficient membrane fusion. Tethering complexes such as HOPS bind SNAREs to coordinate fusion. HOPS binds the Vam3 Habc domain and the SNARE complex, which is required for membrane fusion. Binding of the Vam3 Habc domain prepositions HOPS for optimal fusion support." @default.
- W2003804932 created "2016-06-24" @default.
- W2003804932 creator A5001992846 @default.
- W2003804932 creator A5013559112 @default.
- W2003804932 creator A5020492463 @default.
- W2003804932 creator A5021030878 @default.
- W2003804932 creator A5064885696 @default.
- W2003804932 creator A5069524771 @default.
- W2003804932 date "2015-02-01" @default.
- W2003804932 modified "2023-10-14" @default.
- W2003804932 title "The Habc Domain of the SNARE Vam3 Interacts with the HOPS Tethering Complex to Facilitate Vacuole Fusion" @default.
- W2003804932 cites W1544228065 @default.
- W2003804932 cites W1822252127 @default.
- W2003804932 cites W1976074435 @default.
- W2003804932 cites W1976535934 @default.
- W2003804932 cites W1978698410 @default.
- W2003804932 cites W1990942267 @default.
- W2003804932 cites W1992116234 @default.
- W2003804932 cites W1994500285 @default.
- W2003804932 cites W2000302106 @default.
- W2003804932 cites W2007647318 @default.
- W2003804932 cites W2012764272 @default.
- W2003804932 cites W2024136850 @default.
- W2003804932 cites W2025059188 @default.
- W2003804932 cites W2031231011 @default.
- W2003804932 cites W2058569591 @default.
- W2003804932 cites W2067546702 @default.
- W2003804932 cites W2070732930 @default.
- W2003804932 cites W2070740225 @default.
- W2003804932 cites W2082851502 @default.
- W2003804932 cites W2094205174 @default.
- W2003804932 cites W2095008524 @default.
- W2003804932 cites W2100671512 @default.
- W2003804932 cites W2101097180 @default.
- W2003804932 cites W2104079020 @default.
- W2003804932 cites W2104969134 @default.
- W2003804932 cites W2107843919 @default.
- W2003804932 cites W2126326866 @default.
- W2003804932 cites W2130301962 @default.
- W2003804932 cites W2142846853 @default.
- W2003804932 cites W2157452565 @default.
- W2003804932 cites W2167510623 @default.
- W2003804932 cites W2169814187 @default.
- W2003804932 cites W2170117855 @default.
- W2003804932 cites W2171798772 @default.
- W2003804932 doi "https://doi.org/10.1074/jbc.m114.631465" @default.
- W2003804932 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4342457" @default.
- W2003804932 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25564619" @default.
- W2003804932 hasPublicationYear "2015" @default.
- W2003804932 type Work @default.
- W2003804932 sameAs 2003804932 @default.
- W2003804932 citedByCount "35" @default.
- W2003804932 countsByYear W20038049322015 @default.
- W2003804932 countsByYear W20038049322016 @default.
- W2003804932 countsByYear W20038049322017 @default.
- W2003804932 countsByYear W20038049322018 @default.
- W2003804932 countsByYear W20038049322019 @default.
- W2003804932 countsByYear W20038049322020 @default.
- W2003804932 countsByYear W20038049322021 @default.
- W2003804932 countsByYear W20038049322022 @default.
- W2003804932 countsByYear W20038049322023 @default.
- W2003804932 crossrefType "journal-article" @default.
- W2003804932 hasAuthorship W2003804932A5001992846 @default.
- W2003804932 hasAuthorship W2003804932A5013559112 @default.
- W2003804932 hasAuthorship W2003804932A5020492463 @default.
- W2003804932 hasAuthorship W2003804932A5021030878 @default.
- W2003804932 hasAuthorship W2003804932A5064885696 @default.
- W2003804932 hasAuthorship W2003804932A5069524771 @default.
- W2003804932 hasBestOaLocation W20038049321 @default.
- W2003804932 hasConcept C103038307 @default.
- W2003804932 hasConcept C12554922 @default.
- W2003804932 hasConcept C156728348 @default.
- W2003804932 hasConcept C201815810 @default.
- W2003804932 hasConcept C207332259 @default.
- W2003804932 hasConcept C2908790754 @default.
- W2003804932 hasConcept C41625074 @default.
- W2003804932 hasConcept C55493867 @default.
- W2003804932 hasConcept C86803240 @default.
- W2003804932 hasConcept C95444343 @default.
- W2003804932 hasConceptScore W2003804932C103038307 @default.
- W2003804932 hasConceptScore W2003804932C12554922 @default.
- W2003804932 hasConceptScore W2003804932C156728348 @default.
- W2003804932 hasConceptScore W2003804932C201815810 @default.
- W2003804932 hasConceptScore W2003804932C207332259 @default.
- W2003804932 hasConceptScore W2003804932C2908790754 @default.
- W2003804932 hasConceptScore W2003804932C41625074 @default.
- W2003804932 hasConceptScore W2003804932C55493867 @default.
- W2003804932 hasConceptScore W2003804932C86803240 @default.
- W2003804932 hasConceptScore W2003804932C95444343 @default.
- W2003804932 hasIssue "9" @default.
- W2003804932 hasLocation W20038049321 @default.
- W2003804932 hasLocation W20038049322 @default.
- W2003804932 hasLocation W20038049323 @default.
- W2003804932 hasOpenAccess W2003804932 @default.
- W2003804932 hasPrimaryLocation W20038049321 @default.
- W2003804932 hasRelatedWork W1976074435 @default.
- W2003804932 hasRelatedWork W1981807917 @default.
- W2003804932 hasRelatedWork W2000180192 @default.