Matches in SemOpenAlex for { <https://semopenalex.org/work/W2003805630> ?p ?o ?g. }
- W2003805630 abstract "Abstract Background Allergy is a form of hypersensitivity to normally innocuous substances, such as dust, pollen, foods or drugs. Allergens are small antigens that commonly provoke an IgE antibody response. There are two types of bioinformatics-based allergen prediction. The first approach follows FAO/WHO Codex alimentarius guidelines and searches for sequence similarity. The second approach is based on identifying conserved allergenicity-related linear motifs. Both approaches assume that allergenicity is a linearly coded property. In the present study, we applied ACC pre-processing to sets of known allergens, developing alignment-independent models for allergen recognition based on the main chemical properties of amino acid sequences. Results A set of 684 food, 1,156 inhalant and 555 toxin allergens was collected from several databases. A set of non-allergens from the same species were selected to mirror the allergen set. The amino acids in the protein sequences were described by three z -descriptors ( z 1 , z 2 and z 3 ) and by auto- and cross-covariance (ACC) transformation were converted into uniform vectors. Each protein was presented as a vector of 45 variables. Five machine learning methods for classification were applied in the study to derive models for allergen prediction. The methods were: discriminant analysis by partial least squares (DA-PLS), logistic regression (LR), decision tree (DT), naïve Bayes (NB) and k nearest neighbours ( k NN). The best performing model was derived by k NN at k = 3. It was optimized, cross-validated and implemented in a server named AllerTOP, freely accessible at http://www.pharmfac.net/allertop . AllerTOP also predicts the most probable route of exposure. In comparison to other servers for allergen prediction, AllerTOP outperforms them with 94% sensitivity. Conclusions AllerTOP is the first alignment-free server for in silico prediction of allergens based on the main physicochemical properties of proteins. Significantly, as well allergenicity AllerTOP is able to predict the route of allergen exposure: food, inhalant or toxin." @default.
- W2003805630 created "2016-06-24" @default.
- W2003805630 creator A5051812430 @default.
- W2003805630 creator A5052238096 @default.
- W2003805630 creator A5052912254 @default.
- W2003805630 date "2013-04-01" @default.
- W2003805630 modified "2023-10-10" @default.
- W2003805630 title "AllerTOP - a server for in silico prediction of allergens" @default.
- W2003805630 cites W1963827004 @default.
- W2003805630 cites W1967434989 @default.
- W2003805630 cites W2002566401 @default.
- W2003805630 cites W2005162839 @default.
- W2003805630 cites W2023306209 @default.
- W2003805630 cites W2049858829 @default.
- W2003805630 cites W2063345857 @default.
- W2003805630 cites W2064079961 @default.
- W2003805630 cites W2085519582 @default.
- W2003805630 cites W2087688305 @default.
- W2003805630 cites W2094287390 @default.
- W2003805630 cites W2100124066 @default.
- W2003805630 cites W2102023232 @default.
- W2003805630 cites W2102367710 @default.
- W2003805630 cites W2112874093 @default.
- W2003805630 cites W2114850508 @default.
- W2003805630 cites W2127341158 @default.
- W2003805630 cites W2133990480 @default.
- W2003805630 cites W2139091446 @default.
- W2003805630 cites W2140831756 @default.
- W2003805630 cites W2153544727 @default.
- W2003805630 cites W2155653793 @default.
- W2003805630 cites W2161851240 @default.
- W2003805630 cites W2168518560 @default.
- W2003805630 doi "https://doi.org/10.1186/1471-2105-14-s6-s4" @default.
- W2003805630 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3633022" @default.
- W2003805630 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23735058" @default.
- W2003805630 hasPublicationYear "2013" @default.
- W2003805630 type Work @default.
- W2003805630 sameAs 2003805630 @default.
- W2003805630 citedByCount "257" @default.
- W2003805630 countsByYear W20038056302013 @default.
- W2003805630 countsByYear W20038056302014 @default.
- W2003805630 countsByYear W20038056302015 @default.
- W2003805630 countsByYear W20038056302016 @default.
- W2003805630 countsByYear W20038056302017 @default.
- W2003805630 countsByYear W20038056302018 @default.
- W2003805630 countsByYear W20038056302019 @default.
- W2003805630 countsByYear W20038056302020 @default.
- W2003805630 countsByYear W20038056302021 @default.
- W2003805630 countsByYear W20038056302022 @default.
- W2003805630 countsByYear W20038056302023 @default.
- W2003805630 crossrefType "journal-article" @default.
- W2003805630 hasAuthorship W2003805630A5051812430 @default.
- W2003805630 hasAuthorship W2003805630A5052238096 @default.
- W2003805630 hasAuthorship W2003805630A5052912254 @default.
- W2003805630 hasBestOaLocation W20038056301 @default.
- W2003805630 hasConcept C104317684 @default.
- W2003805630 hasConcept C12267149 @default.
- W2003805630 hasConcept C153180895 @default.
- W2003805630 hasConcept C154945302 @default.
- W2003805630 hasConcept C177264268 @default.
- W2003805630 hasConcept C199360897 @default.
- W2003805630 hasConcept C203014093 @default.
- W2003805630 hasConcept C207480886 @default.
- W2003805630 hasConcept C2775905019 @default.
- W2003805630 hasConcept C2780510475 @default.
- W2003805630 hasConcept C33923547 @default.
- W2003805630 hasConcept C41008148 @default.
- W2003805630 hasConcept C54355233 @default.
- W2003805630 hasConcept C70721500 @default.
- W2003805630 hasConcept C86803240 @default.
- W2003805630 hasConceptScore W2003805630C104317684 @default.
- W2003805630 hasConceptScore W2003805630C12267149 @default.
- W2003805630 hasConceptScore W2003805630C153180895 @default.
- W2003805630 hasConceptScore W2003805630C154945302 @default.
- W2003805630 hasConceptScore W2003805630C177264268 @default.
- W2003805630 hasConceptScore W2003805630C199360897 @default.
- W2003805630 hasConceptScore W2003805630C203014093 @default.
- W2003805630 hasConceptScore W2003805630C207480886 @default.
- W2003805630 hasConceptScore W2003805630C2775905019 @default.
- W2003805630 hasConceptScore W2003805630C2780510475 @default.
- W2003805630 hasConceptScore W2003805630C33923547 @default.
- W2003805630 hasConceptScore W2003805630C41008148 @default.
- W2003805630 hasConceptScore W2003805630C54355233 @default.
- W2003805630 hasConceptScore W2003805630C70721500 @default.
- W2003805630 hasConceptScore W2003805630C86803240 @default.
- W2003805630 hasIssue "S6" @default.
- W2003805630 hasLocation W20038056301 @default.
- W2003805630 hasLocation W20038056302 @default.
- W2003805630 hasLocation W20038056303 @default.
- W2003805630 hasLocation W20038056304 @default.
- W2003805630 hasLocation W20038056305 @default.
- W2003805630 hasOpenAccess W2003805630 @default.
- W2003805630 hasPrimaryLocation W20038056301 @default.
- W2003805630 hasRelatedWork W2041399278 @default.
- W2003805630 hasRelatedWork W2099369243 @default.
- W2003805630 hasRelatedWork W2136184105 @default.
- W2003805630 hasRelatedWork W2141705618 @default.
- W2003805630 hasRelatedWork W2153189372 @default.
- W2003805630 hasRelatedWork W2160451891 @default.
- W2003805630 hasRelatedWork W2907729382 @default.