Matches in SemOpenAlex for { <https://semopenalex.org/work/W2003808007> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W2003808007 endingPage "429" @default.
- W2003808007 startingPage "415" @default.
- W2003808007 abstract "Previous article Next article An Efficient Computational Procedure for a Generalized Quadratic Programming ProblemRobert O. BarrRobert O. Barrhttps://doi.org/10.1137/0307030PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] Elmer G. Gilbert, An iterative procedure for computing the minimum of a quadratic form on a convex set, SIAM J. Control, 4 (1966), 61–80 10.1137/0304007 MR0189875 0196.51204 LinkGoogle Scholar[2] R. O. Barr, Masters Thesis, Computation of optimal controls by quadratic programming on convex reachable sets, Doctoral thesis, University of Michigan, 1966 Google Scholar[3] Robert O. Barr and , Elmer G. Gilbert, Some iterative procedures for computing optimal controlsAutomatic and remote control III (Proc. Third Congr. Internat. Federation Automat. Control (IFAC), London, 1966), Vol. 1, p. 47, Paper 24 D, Inst. Mech. Engrs., London, 1967, 9– MR0378410 Google Scholar[4] Marguerite Frank and , Philip Wolfe, An algorithm for quadratic programming, Naval Res. Logist. Quart., 3 (1956), 95–110 MR0089102 CrossrefGoogle Scholar[5] G. Hadley, Nonlinear and dynamic programming, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1964xi+484 MR0173543 0179.24601 Google Scholar[6] H. S. Houthakker, The capacity method of quadratic programming, Econometrica, 28 (1960), 62–87 MR0113723 0089.16001 CrossrefISIGoogle Scholar[7] S. Vajda, Mathematical programming, Addison-Wesley Series in Statistics, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1961ix+310 MR0135621 0102.36401 Google Scholar[8] Philip Wolfe, The simplex method for quadratic programming, Econometrica, 27 (1959), 382–398 MR0106783 0103.37603 CrossrefISIGoogle Scholar[9] Toshio Fujisawa and , Yutaka Yasuda, An iterative procedure for solving the time-optimal regulator problem, SIAM J. Control, 5 (1967), 501–512 10.1137/0305029 MR0222741 0178.10502 LinkGoogle Scholar[10] Lucien W. Neustadt, Synthesizing time optimal control systems, J. Math. Anal. Appl., 1 (1960), 484–493 10.1016/0022-247X(60)90015-9 MR0128573 0100.09903 CrossrefGoogle Scholar[11] Lucien W. Neustadt, Minimum effort control systems, J. SIAM Control Ser. A, 1 (1962), 16–31 10.1137/0301002 MR0145172 LinkGoogle Scholar[12] L. W. Neustadt, On synthesizing optimal controls, Proc. Second Congress of the International Federation of Automatic Control (IFAC), Butterworth, London, 1964 Google Scholar[13] J. H. Eaton, An iterative solution to time-optimal control, J. Math. Anal. Appl., 5 (1962), 329–344, 9 (1964), pp. 147–152 10.1016/S0022-247X(62)80015-8 MR0140800 0142.06801 CrossrefGoogle Scholar[14] Edward J. Fadden and , Elmer G. Gilbert, Computational aspects of the time-optimal control problemComputing Methods in Optimization Problems (Proc. Conf., Univ. California, Los Angeles, Calif., 1964), Academic Press, New York, 1964, 167–192 MR0168413 0161.07103 CrossrefGoogle Scholar[15] T. G. Babunashvili, The synthesis of linear optimal systems, SIAM J. Control, 2 (1964), 261–265 10.1137/0302023 LinkGoogle Scholar[16] V. F. Dem'janov, Construction of an optimum program in a linear system, Avtomat. i Telemeh., 25 (1964), 3–11 MR0189874 Google Scholar[17] C. Carathéodory, Über den variabilitätsbereich der Fourierschen konstanten von positiven harmonischen funktionen, Rend. Circ. Mat. Palermo, 32 (1911), 193–217 CrossrefGoogle Scholar[18] H. G. Eggleston, Convexity, Cambridge Tracts in Mathematics and Mathematical Physics, No. 47, Cambridge University Press, New York, 1958viii+136 MR0124813 0086.15302 CrossrefGoogle Scholar Previous article Next article FiguresRelatedReferencesCited byDetails On the Mathematical Foundations of Nondifferentiable Optimization in Engineering DesignE. Polak18 July 2006 | SIAM Review, Vol. 29, No. 1AbstractPDF (6593 KB)Iterative Procedures for Constrained and Unilateral Optimization ProblemsJ. Warga17 February 2012 | SIAM Journal on Control and Optimization, Vol. 20, No. 3AbstractPDF (1487 KB)Accelerated Frank–Wolfe AlgorithmsGerard G. L. Meyer1 August 2006 | SIAM Journal on Control, Vol. 12, No. 4AbstractPDF (877 KB)A Geometrically Convergent Algorithm for Solving Optimal Control ProblemsEarl R. Barnes18 July 2006 | SIAM Journal on Control, Vol. 10, No. 3AbstractPDF (769 KB)A New Iterative Procedure for the Minimization of a Quadratic Form on a Convex SetThomas Pecsvaradi and Kumpati S. Narendra18 July 2006 | SIAM Journal on Control, Vol. 8, No. 3AbstractPDF (466 KB) Volume 7, Issue 3| 1969SIAM Journal on Control History Submitted:02 April 1968Published online:18 July 2006 InformationCopyright © 1969 Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/0307030Article page range:pp. 415-429ISSN (print):0036-1402Publisher:Society for Industrial and Applied Mathematics" @default.
- W2003808007 created "2016-06-24" @default.
- W2003808007 creator A5057314209 @default.
- W2003808007 date "1969-08-01" @default.
- W2003808007 modified "2023-10-05" @default.
- W2003808007 title "An Efficient Computational Procedure for a Generalized Quadratic Programming Problem" @default.
- W2003808007 doi "https://doi.org/10.1137/0307030" @default.
- W2003808007 hasPublicationYear "1969" @default.
- W2003808007 type Work @default.
- W2003808007 sameAs 2003808007 @default.
- W2003808007 citedByCount "36" @default.
- W2003808007 countsByYear W20038080072012 @default.
- W2003808007 countsByYear W20038080072015 @default.
- W2003808007 countsByYear W20038080072017 @default.
- W2003808007 countsByYear W20038080072020 @default.
- W2003808007 crossrefType "journal-article" @default.
- W2003808007 hasAuthorship W2003808007A5057314209 @default.
- W2003808007 hasConcept C126255220 @default.
- W2003808007 hasConcept C129844170 @default.
- W2003808007 hasConcept C136119220 @default.
- W2003808007 hasConcept C144237770 @default.
- W2003808007 hasConcept C17744445 @default.
- W2003808007 hasConcept C199539241 @default.
- W2003808007 hasConcept C202444582 @default.
- W2003808007 hasConcept C2524010 @default.
- W2003808007 hasConcept C33923547 @default.
- W2003808007 hasConcept C41008148 @default.
- W2003808007 hasConcept C554936623 @default.
- W2003808007 hasConcept C81845259 @default.
- W2003808007 hasConceptScore W2003808007C126255220 @default.
- W2003808007 hasConceptScore W2003808007C129844170 @default.
- W2003808007 hasConceptScore W2003808007C136119220 @default.
- W2003808007 hasConceptScore W2003808007C144237770 @default.
- W2003808007 hasConceptScore W2003808007C17744445 @default.
- W2003808007 hasConceptScore W2003808007C199539241 @default.
- W2003808007 hasConceptScore W2003808007C202444582 @default.
- W2003808007 hasConceptScore W2003808007C2524010 @default.
- W2003808007 hasConceptScore W2003808007C33923547 @default.
- W2003808007 hasConceptScore W2003808007C41008148 @default.
- W2003808007 hasConceptScore W2003808007C554936623 @default.
- W2003808007 hasConceptScore W2003808007C81845259 @default.
- W2003808007 hasIssue "3" @default.
- W2003808007 hasLocation W20038080071 @default.
- W2003808007 hasOpenAccess W2003808007 @default.
- W2003808007 hasPrimaryLocation W20038080071 @default.
- W2003808007 hasRelatedWork W1911744185 @default.
- W2003808007 hasRelatedWork W1966349642 @default.
- W2003808007 hasRelatedWork W2099408765 @default.
- W2003808007 hasRelatedWork W2134774409 @default.
- W2003808007 hasRelatedWork W2372034907 @default.
- W2003808007 hasRelatedWork W2391945574 @default.
- W2003808007 hasRelatedWork W2966089465 @default.
- W2003808007 hasRelatedWork W2966411060 @default.
- W2003808007 hasRelatedWork W3164697397 @default.
- W2003808007 hasRelatedWork W2061552033 @default.
- W2003808007 hasVolume "7" @default.
- W2003808007 isParatext "false" @default.
- W2003808007 isRetracted "false" @default.
- W2003808007 magId "2003808007" @default.
- W2003808007 workType "article" @default.