Matches in SemOpenAlex for { <https://semopenalex.org/work/W2003829104> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2003829104 endingPage "537" @default.
- W2003829104 startingPage "529" @default.
- W2003829104 abstract "Self-Organising Feature Map (SOFM) along with learning vector quantizers (LVQ) have been designed to identify the alterations in brain electrical potentials due to exposure to high environmental heat in rats. Three groups of rats were considered—acute heat stressed, chronic heat stressed and control groups. After long EEG recordings following heat exposure, EEG data representing three different vigilance states such as slow wave sleep (SWS), rapid eye movement (REM) sleep and AWAKE were visually selected and further subdivided into 2 seconds long epoch. In order to evaluate the performance of artificial neural network (ANN) in recognizing chronic and acute effects of heat stress with respect to the control subjects, unsupervised learning algorithm was applied on EEG data. Mean performance of SOFM with quadratic taper function was found to be better (chronic-92.6%, acute-93.2%) over the other two tapers. The effect of LVQ after the initial SOFM training seems explicit giving rise to considerable improvements in performance in terms of selectivity and sensitivity. The percentage increase in selectivity with uniform taper function is maximum for chronic and its control group (4.01%) and minimum for acute group (1.29%) whereas, with Gaussian it is almost identical (chronic-2.57%, acute-2.03%, control- 2.33%). Quadratic taper function gives rise to an increase of 2.41% for chronic, 1.96% for acute and 2.91% for control patterns." @default.
- W2003829104 created "2016-06-24" @default.
- W2003829104 creator A5043571610 @default.
- W2003829104 creator A5047241239 @default.
- W2003829104 creator A5047635971 @default.
- W2003829104 date "2010-01-01" @default.
- W2003829104 modified "2023-09-29" @default.
- W2003829104 title "Predicting heat-stressed EEG spectra by self-organising feature map and learning vector quantizers——SOFM and LVQ based stress prediction" @default.
- W2003829104 cites W1965862994 @default.
- W2003829104 doi "https://doi.org/10.4236/jbise.2010.35074" @default.
- W2003829104 hasPublicationYear "2010" @default.
- W2003829104 type Work @default.
- W2003829104 sameAs 2003829104 @default.
- W2003829104 citedByCount "6" @default.
- W2003829104 countsByYear W20038291042013 @default.
- W2003829104 countsByYear W20038291042018 @default.
- W2003829104 countsByYear W20038291042020 @default.
- W2003829104 crossrefType "journal-article" @default.
- W2003829104 hasAuthorship W2003829104A5043571610 @default.
- W2003829104 hasAuthorship W2003829104A5047241239 @default.
- W2003829104 hasAuthorship W2003829104A5047635971 @default.
- W2003829104 hasBestOaLocation W20038291041 @default.
- W2003829104 hasConcept C138885662 @default.
- W2003829104 hasConcept C153180895 @default.
- W2003829104 hasConcept C154945302 @default.
- W2003829104 hasConcept C15744967 @default.
- W2003829104 hasConcept C169760540 @default.
- W2003829104 hasConcept C192769605 @default.
- W2003829104 hasConcept C2776401178 @default.
- W2003829104 hasConcept C28490314 @default.
- W2003829104 hasConcept C33923547 @default.
- W2003829104 hasConcept C40567965 @default.
- W2003829104 hasConcept C41008148 @default.
- W2003829104 hasConcept C41895202 @default.
- W2003829104 hasConcept C50644808 @default.
- W2003829104 hasConcept C522805319 @default.
- W2003829104 hasConceptScore W2003829104C138885662 @default.
- W2003829104 hasConceptScore W2003829104C153180895 @default.
- W2003829104 hasConceptScore W2003829104C154945302 @default.
- W2003829104 hasConceptScore W2003829104C15744967 @default.
- W2003829104 hasConceptScore W2003829104C169760540 @default.
- W2003829104 hasConceptScore W2003829104C192769605 @default.
- W2003829104 hasConceptScore W2003829104C2776401178 @default.
- W2003829104 hasConceptScore W2003829104C28490314 @default.
- W2003829104 hasConceptScore W2003829104C33923547 @default.
- W2003829104 hasConceptScore W2003829104C40567965 @default.
- W2003829104 hasConceptScore W2003829104C41008148 @default.
- W2003829104 hasConceptScore W2003829104C41895202 @default.
- W2003829104 hasConceptScore W2003829104C50644808 @default.
- W2003829104 hasConceptScore W2003829104C522805319 @default.
- W2003829104 hasIssue "05" @default.
- W2003829104 hasLocation W20038291041 @default.
- W2003829104 hasOpenAccess W2003829104 @default.
- W2003829104 hasPrimaryLocation W20038291041 @default.
- W2003829104 hasRelatedWork W1517721627 @default.
- W2003829104 hasRelatedWork W2016461833 @default.
- W2003829104 hasRelatedWork W2052253960 @default.
- W2003829104 hasRelatedWork W2147802381 @default.
- W2003829104 hasRelatedWork W2382607599 @default.
- W2003829104 hasRelatedWork W2546942002 @default.
- W2003829104 hasRelatedWork W2554403468 @default.
- W2003829104 hasRelatedWork W2621186532 @default.
- W2003829104 hasRelatedWork W3049633467 @default.
- W2003829104 hasRelatedWork W2559504630 @default.
- W2003829104 hasVolume "03" @default.
- W2003829104 isParatext "false" @default.
- W2003829104 isRetracted "false" @default.
- W2003829104 magId "2003829104" @default.
- W2003829104 workType "article" @default.