Matches in SemOpenAlex for { <https://semopenalex.org/work/W2003851838> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2003851838 endingPage "444" @default.
- W2003851838 startingPage "419" @default.
- W2003851838 abstract "The theory of the umbral chromatic polynomial of a simplicial complex provides a combinatorial framework for the study of formal group laws over a commutative, torsion-free ring, and our aim in this work is to extend its definition to a class of set systems P, which we label partition systems . When suitably evaluated, our polynomial χ ψ ( P ; x ) enumerates factorized colorings, as well as coloring forests of the partition system by type. These colorings are related to the Mullin-Rota concept of reluctant functions, and whenever P is a simplicial complex, they reduce to more familiar notions of coloring. Our three main results demonstrate how several properties of the classical chromatic polynomial χ ( H ; x ), where H is a simple graph, may be generalized. Firstly, we prove that our polynomial χ ψ ( P ; x ) retains the property of being expressible as the characteristic polynomial of an appropriate poset, which holds for χ ( H ; x ) by virtue of Whitney's original definition. Secondly, we provide two generalizations for the formula describing the chromatic polynomial of a disjoint union of graphs; one of these formulas depends explicitly on the context of partition systems and is not available when we restrict attention to graphs or simplicial complexes. Thirdly, we introduce partition systems with group action, thereby providing a combinatorial interpretation of normalized versions of our polynomials. In the case of the symmetric group acting on the trivial partition system, these are the normalized conjugate Bell polynomials, whose interpretation is a vital prerequisite for extending our framework to formal group laws over arbitrary rings of scalars; here, however, we concentrate solely on combinatorial aspects." @default.
- W2003851838 created "2016-06-24" @default.
- W2003851838 creator A5027153220 @default.
- W2003851838 creator A5052175642 @default.
- W2003851838 date "1997-04-01" @default.
- W2003851838 modified "2023-09-26" @default.
- W2003851838 title "Chromatic polynomials of partition systems" @default.
- W2003851838 cites W1567268701 @default.
- W2003851838 cites W1988586833 @default.
- W2003851838 cites W2001124661 @default.
- W2003851838 cites W2006210985 @default.
- W2003851838 cites W2040661328 @default.
- W2003851838 cites W2041946670 @default.
- W2003851838 cites W2046936970 @default.
- W2003851838 cites W2048936241 @default.
- W2003851838 cites W2092653160 @default.
- W2003851838 cites W2143048602 @default.
- W2003851838 cites W2145777586 @default.
- W2003851838 cites W2151987464 @default.
- W2003851838 cites W2319873605 @default.
- W2003851838 cites W2551331446 @default.
- W2003851838 cites W2914659449 @default.
- W2003851838 doi "https://doi.org/10.1016/s0012-365x(96)00245-2" @default.
- W2003851838 hasPublicationYear "1997" @default.
- W2003851838 type Work @default.
- W2003851838 sameAs 2003851838 @default.
- W2003851838 citedByCount "4" @default.
- W2003851838 countsByYear W20038518382019 @default.
- W2003851838 countsByYear W20038518382020 @default.
- W2003851838 crossrefType "journal-article" @default.
- W2003851838 hasAuthorship W2003851838A5027153220 @default.
- W2003851838 hasAuthorship W2003851838A5052175642 @default.
- W2003851838 hasConcept C114614502 @default.
- W2003851838 hasConcept C118615104 @default.
- W2003851838 hasConcept C126385604 @default.
- W2003851838 hasConcept C134306372 @default.
- W2003851838 hasConcept C187929450 @default.
- W2003851838 hasConcept C196956537 @default.
- W2003851838 hasConcept C2333172 @default.
- W2003851838 hasConcept C33923547 @default.
- W2003851838 hasConcept C42812 @default.
- W2003851838 hasConcept C45340560 @default.
- W2003851838 hasConcept C90119067 @default.
- W2003851838 hasConceptScore W2003851838C114614502 @default.
- W2003851838 hasConceptScore W2003851838C118615104 @default.
- W2003851838 hasConceptScore W2003851838C126385604 @default.
- W2003851838 hasConceptScore W2003851838C134306372 @default.
- W2003851838 hasConceptScore W2003851838C187929450 @default.
- W2003851838 hasConceptScore W2003851838C196956537 @default.
- W2003851838 hasConceptScore W2003851838C2333172 @default.
- W2003851838 hasConceptScore W2003851838C33923547 @default.
- W2003851838 hasConceptScore W2003851838C42812 @default.
- W2003851838 hasConceptScore W2003851838C45340560 @default.
- W2003851838 hasConceptScore W2003851838C90119067 @default.
- W2003851838 hasLocation W20038518381 @default.
- W2003851838 hasOpenAccess W2003851838 @default.
- W2003851838 hasPrimaryLocation W20038518381 @default.
- W2003851838 hasRelatedWork W1964114184 @default.
- W2003851838 hasRelatedWork W1989097746 @default.
- W2003851838 hasRelatedWork W2006170146 @default.
- W2003851838 hasRelatedWork W2033247133 @default.
- W2003851838 hasRelatedWork W2033753932 @default.
- W2003851838 hasRelatedWork W2068071044 @default.
- W2003851838 hasRelatedWork W2074383285 @default.
- W2003851838 hasRelatedWork W2145358719 @default.
- W2003851838 hasRelatedWork W2983506641 @default.
- W2003851838 hasRelatedWork W4235147506 @default.
- W2003851838 hasVolume "167-168" @default.
- W2003851838 isParatext "false" @default.
- W2003851838 isRetracted "false" @default.
- W2003851838 magId "2003851838" @default.
- W2003851838 workType "article" @default.