Matches in SemOpenAlex for { <https://semopenalex.org/work/W2003936699> ?p ?o ?g. }
- W2003936699 endingPage "382" @default.
- W2003936699 startingPage "363" @default.
- W2003936699 abstract "In hypervelocity meteorite impacts, shock energies produce temperatures well above the melting point of a wide area of the impacted target rocks. This produces impact melt during excavation and expansion of the transient crater cavity. The vast majority of this melt is retained in the crater-fill stratigraphy where it may form coherent melt units and/or be variably mixed with non-molten target rocks. A small portion (1–3%) of this melt is ejected from the crater at very high velocities – potentially faster than the impactor itself – forming impact glasses and, in rare cases, tektites. Why only some impacts form large volumes of high velocity impact glass and even fewer form tektites remains poorly understood. Many of the expected theoretical controls on the production and dispersal of high-velocity impact melt (target rock type, impact size, impact angle) do not seem to apply; comparison of the volume and nature of ejected melt around complex and simple craters on Earth reveals no systematic relationship to any of these parameters. The geologic evidence suggests that there is another controlling mechanism that promotes production of high velocity impact melt and tektite formation in some impacts. The Darwin impact event shows clearly that the presence of water rich surface layers in the target stratigraphy enhances by orders of magnitude the production of high velocity ejected melt; as hinted at by some numerical models. For tektites from all four strewn fields, the presence of water rich surface layers at the impact site can be inferred and it seems this is the missing feature of the target stratigraphy required to explain tektite origin." @default.
- W2003936699 created "2016-06-24" @default.
- W2003936699 creator A5001420712 @default.
- W2003936699 date "2011-06-01" @default.
- W2003936699 modified "2023-10-18" @default.
- W2003936699 title "Volatile enhanced dispersal of high velocity impact melts and the origin of tektites" @default.
- W2003936699 cites W121907931 @default.
- W2003936699 cites W1633328588 @default.
- W2003936699 cites W1639007758 @default.
- W2003936699 cites W1969759974 @default.
- W2003936699 cites W1970898185 @default.
- W2003936699 cites W1971488053 @default.
- W2003936699 cites W1972498359 @default.
- W2003936699 cites W1974188225 @default.
- W2003936699 cites W1975275067 @default.
- W2003936699 cites W1978355084 @default.
- W2003936699 cites W1978601643 @default.
- W2003936699 cites W1983363094 @default.
- W2003936699 cites W1983564203 @default.
- W2003936699 cites W1983812773 @default.
- W2003936699 cites W1984650754 @default.
- W2003936699 cites W1986091203 @default.
- W2003936699 cites W1987760746 @default.
- W2003936699 cites W1988666809 @default.
- W2003936699 cites W1990957372 @default.
- W2003936699 cites W1991257051 @default.
- W2003936699 cites W1991527301 @default.
- W2003936699 cites W1993298893 @default.
- W2003936699 cites W1995425118 @default.
- W2003936699 cites W1998567997 @default.
- W2003936699 cites W1999212738 @default.
- W2003936699 cites W1999757960 @default.
- W2003936699 cites W2000215271 @default.
- W2003936699 cites W2001536875 @default.
- W2003936699 cites W2003938062 @default.
- W2003936699 cites W2010606573 @default.
- W2003936699 cites W2017548289 @default.
- W2003936699 cites W2018140190 @default.
- W2003936699 cites W2022406513 @default.
- W2003936699 cites W2022773225 @default.
- W2003936699 cites W2029501045 @default.
- W2003936699 cites W2030307043 @default.
- W2003936699 cites W2030905542 @default.
- W2003936699 cites W2030911183 @default.
- W2003936699 cites W2031767060 @default.
- W2003936699 cites W2033662216 @default.
- W2003936699 cites W2035839889 @default.
- W2003936699 cites W2037073266 @default.
- W2003936699 cites W2038437530 @default.
- W2003936699 cites W2039886542 @default.
- W2003936699 cites W2041569387 @default.
- W2003936699 cites W2042400504 @default.
- W2003936699 cites W2043639376 @default.
- W2003936699 cites W2044330453 @default.
- W2003936699 cites W2048457034 @default.
- W2003936699 cites W2049903685 @default.
- W2003936699 cites W2053222610 @default.
- W2003936699 cites W2060758278 @default.
- W2003936699 cites W2062068029 @default.
- W2003936699 cites W2062767312 @default.
- W2003936699 cites W2066321058 @default.
- W2003936699 cites W2068996103 @default.
- W2003936699 cites W2070515043 @default.
- W2003936699 cites W2071509659 @default.
- W2003936699 cites W2072945160 @default.
- W2003936699 cites W2075247229 @default.
- W2003936699 cites W2076597941 @default.
- W2003936699 cites W2080496885 @default.
- W2003936699 cites W2080584177 @default.
- W2003936699 cites W2083152836 @default.
- W2003936699 cites W2083315370 @default.
- W2003936699 cites W2083654323 @default.
- W2003936699 cites W2084695680 @default.
- W2003936699 cites W2089711923 @default.
- W2003936699 cites W2093640488 @default.
- W2003936699 cites W2094204074 @default.
- W2003936699 cites W2097006339 @default.
- W2003936699 cites W2100829282 @default.
- W2003936699 cites W2101130220 @default.
- W2003936699 cites W2102660383 @default.
- W2003936699 cites W2103252911 @default.
- W2003936699 cites W2103944273 @default.
- W2003936699 cites W2107582290 @default.
- W2003936699 cites W2108369857 @default.
- W2003936699 cites W2111945496 @default.
- W2003936699 cites W2114365027 @default.
- W2003936699 cites W2115594328 @default.
- W2003936699 cites W2118442388 @default.
- W2003936699 cites W2122476304 @default.
- W2003936699 cites W2123797370 @default.
- W2003936699 cites W2128642779 @default.
- W2003936699 cites W2134713886 @default.
- W2003936699 cites W2142579322 @default.
- W2003936699 cites W2152211844 @default.
- W2003936699 cites W2345932297 @default.
- W2003936699 cites W4229496147 @default.
- W2003936699 cites W4256429907 @default.
- W2003936699 doi "https://doi.org/10.1016/j.pgeola.2010.11.006" @default.