Matches in SemOpenAlex for { <https://semopenalex.org/work/W2003995504> ?p ?o ?g. }
- W2003995504 abstract "We study the orientational ordering in systems of self-propelled particles with selective interactions. To introduce the selectivity we augment the standard Vicsek model with a bounded-confidence collision rule: a given particle only aligns to neighbors who have directions quite similar to its own. Neighbors whose directions deviate more than a fixed restriction angle α are ignored. The collective dynamics of this system is studied by agent-based simulations and kinetic mean-field theory. We demonstrate that the reduction of the restriction angle leads to a critical noise amplitude decreasing monotonically with that angle, turning into a power law with exponent 3/2 for small angles. Moreover, for small system sizes we show that upon decreasing the restriction angle, the kind of the transition to polar collective motion changes from continuous to discontinuous. Thus, an apparent tricritical point with different scaling laws is identified and calculated analytically. We investigate the shifting and vanishing of this point due to the formation of density bands as the system size is increased. Agent-based simulations in small systems with large particle velocities show excellent agreement with the kinetic theory predictions. We also find that at very small interaction angles, the polar ordered phase becomes unstable with respect to the apolar phase. We derive analytical expressions for the dependence of the threshold noise on the restriction angle. We show that the mean-field kinetic theory also permits stationary nematic states below a restriction angle of 0.681π. We calculate the critical noise, at which the disordered state bifurcates to a nematic state, and find that it is always smaller than the threshold noise for the transition from disorder to polar order. The disordered-nematic transition features two tricritical points: At low and high restriction angle, the transition is discontinuous but continuous at intermediate α. We generalize our results to systems that show fragmentation into more than two groups and obtain scaling laws for the transition lines and the corresponding tricritical points. A numerical method to evaluate the nonlinear Fredholm integral equation for the stationary distribution function is also presented. This method is shown to give excellent agreement with agent-based simulations, even in strongly ordered systems at noise values close to zero." @default.
- W2003995504 created "2016-06-24" @default.
- W2003995504 creator A5032711696 @default.
- W2003995504 creator A5059989452 @default.
- W2003995504 creator A5088997300 @default.
- W2003995504 date "2014-12-24" @default.
- W2003995504 modified "2023-09-24" @default.
- W2003995504 title "Tricritical points in a Vicsek model of self-propelled particles with bounded confidence" @default.
- W2003995504 cites W1502426143 @default.
- W2003995504 cites W1554189059 @default.
- W2003995504 cites W1888172398 @default.
- W2003995504 cites W1971255142 @default.
- W2003995504 cites W1981410769 @default.
- W2003995504 cites W1982644378 @default.
- W2003995504 cites W1984123744 @default.
- W2003995504 cites W1987098334 @default.
- W2003995504 cites W1987365226 @default.
- W2003995504 cites W1987593367 @default.
- W2003995504 cites W1989028086 @default.
- W2003995504 cites W1991475131 @default.
- W2003995504 cites W1991602497 @default.
- W2003995504 cites W1991891170 @default.
- W2003995504 cites W1995291300 @default.
- W2003995504 cites W1996922813 @default.
- W2003995504 cites W2001727444 @default.
- W2003995504 cites W2002719769 @default.
- W2003995504 cites W2004610991 @default.
- W2003995504 cites W2015410655 @default.
- W2003995504 cites W2018580609 @default.
- W2003995504 cites W2026064944 @default.
- W2003995504 cites W2033921269 @default.
- W2003995504 cites W2034712237 @default.
- W2003995504 cites W2039580618 @default.
- W2003995504 cites W2041035848 @default.
- W2003995504 cites W2042898119 @default.
- W2003995504 cites W2043807860 @default.
- W2003995504 cites W2059088263 @default.
- W2003995504 cites W2061477898 @default.
- W2003995504 cites W2063807646 @default.
- W2003995504 cites W2067035389 @default.
- W2003995504 cites W2069079436 @default.
- W2003995504 cites W2069908635 @default.
- W2003995504 cites W2073245421 @default.
- W2003995504 cites W2074574519 @default.
- W2003995504 cites W2083689991 @default.
- W2003995504 cites W2093896870 @default.
- W2003995504 cites W2096073370 @default.
- W2003995504 cites W2105218727 @default.
- W2003995504 cites W2143969246 @default.
- W2003995504 cites W2144770117 @default.
- W2003995504 cites W2154485952 @default.
- W2003995504 cites W2162933501 @default.
- W2003995504 cites W2166160610 @default.
- W2003995504 cites W2171508688 @default.
- W2003995504 cites W2171928181 @default.
- W2003995504 cites W2327506065 @default.
- W2003995504 cites W2333061400 @default.
- W2003995504 cites W3037683188 @default.
- W2003995504 cites W3099747553 @default.
- W2003995504 cites W3103212563 @default.
- W2003995504 cites W3104092989 @default.
- W2003995504 cites W3104310224 @default.
- W2003995504 cites W3191407898 @default.
- W2003995504 doi "https://doi.org/10.1103/physreve.90.063315" @default.
- W2003995504 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25615230" @default.
- W2003995504 hasPublicationYear "2014" @default.
- W2003995504 type Work @default.
- W2003995504 sameAs 2003995504 @default.
- W2003995504 citedByCount "36" @default.
- W2003995504 countsByYear W20039955042015 @default.
- W2003995504 countsByYear W20039955042016 @default.
- W2003995504 countsByYear W20039955042017 @default.
- W2003995504 countsByYear W20039955042018 @default.
- W2003995504 countsByYear W20039955042019 @default.
- W2003995504 countsByYear W20039955042020 @default.
- W2003995504 countsByYear W20039955042021 @default.
- W2003995504 countsByYear W20039955042022 @default.
- W2003995504 crossrefType "journal-article" @default.
- W2003995504 hasAuthorship W2003995504A5032711696 @default.
- W2003995504 hasAuthorship W2003995504A5059989452 @default.
- W2003995504 hasAuthorship W2003995504A5088997300 @default.
- W2003995504 hasBestOaLocation W20039955042 @default.
- W2003995504 hasConcept C115961682 @default.
- W2003995504 hasConcept C121332964 @default.
- W2003995504 hasConcept C121864883 @default.
- W2003995504 hasConcept C134306372 @default.
- W2003995504 hasConcept C135889238 @default.
- W2003995504 hasConcept C154945302 @default.
- W2003995504 hasConcept C196298200 @default.
- W2003995504 hasConcept C202213908 @default.
- W2003995504 hasConcept C2524010 @default.
- W2003995504 hasConcept C26873012 @default.
- W2003995504 hasConcept C33923547 @default.
- W2003995504 hasConcept C34388435 @default.
- W2003995504 hasConcept C41008148 @default.
- W2003995504 hasConcept C44280652 @default.
- W2003995504 hasConcept C62520636 @default.
- W2003995504 hasConcept C70850613 @default.
- W2003995504 hasConcept C74650414 @default.
- W2003995504 hasConcept C85906118 @default.