Matches in SemOpenAlex for { <https://semopenalex.org/work/W2004014557> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W2004014557 endingPage "499" @default.
- W2004014557 startingPage "487" @default.
- W2004014557 abstract "In the paper, via the singular Riemann–Roch theorem, it is proved that the class of the e th Frobenius power A e can be described using the class of the canonical module ω A for a normal local ring A of positive characteristic. As a corollary, we prove that the coefficient β ( I , M ) of the second term of the Hilbert–Kunz function ℓ A ( M / I [ p e ] M ) of e vanishes if A is a Q -Gorenstein ring and M is a finitely generated A -module of finite projective dimension. For a normal algebraic variety X over a perfect field of positive characteristic, it is proved that the first Chern class of the e th Frobenius power F ∗ e O X can be described using the canonical divisor K X ." @default.
- W2004014557 created "2016-06-24" @default.
- W2004014557 creator A5055630802 @default.
- W2004014557 date "2006-10-01" @default.
- W2004014557 modified "2023-09-26" @default.
- W2004014557 title "The singular Riemann–Roch theorem and Hilbert–Kunz functions" @default.
- W2004014557 cites W1990987073 @default.
- W2004014557 cites W2006021039 @default.
- W2004014557 cites W2058801276 @default.
- W2004014557 cites W2060378519 @default.
- W2004014557 cites W2964124844 @default.
- W2004014557 cites W3100244584 @default.
- W2004014557 doi "https://doi.org/10.1016/j.jalgebra.2005.11.019" @default.
- W2004014557 hasPublicationYear "2006" @default.
- W2004014557 type Work @default.
- W2004014557 sameAs 2004014557 @default.
- W2004014557 citedByCount "22" @default.
- W2004014557 countsByYear W20040145572012 @default.
- W2004014557 countsByYear W20040145572014 @default.
- W2004014557 countsByYear W20040145572015 @default.
- W2004014557 countsByYear W20040145572016 @default.
- W2004014557 countsByYear W20040145572017 @default.
- W2004014557 countsByYear W20040145572018 @default.
- W2004014557 countsByYear W20040145572019 @default.
- W2004014557 countsByYear W20040145572020 @default.
- W2004014557 countsByYear W20040145572021 @default.
- W2004014557 countsByYear W20040145572022 @default.
- W2004014557 crossrefType "journal-article" @default.
- W2004014557 hasAuthorship W2004014557A5055630802 @default.
- W2004014557 hasBestOaLocation W20040145571 @default.
- W2004014557 hasConcept C199479865 @default.
- W2004014557 hasConcept C202444582 @default.
- W2004014557 hasConcept C33923547 @default.
- W2004014557 hasConceptScore W2004014557C199479865 @default.
- W2004014557 hasConceptScore W2004014557C202444582 @default.
- W2004014557 hasConceptScore W2004014557C33923547 @default.
- W2004014557 hasIssue "1" @default.
- W2004014557 hasLocation W20040145571 @default.
- W2004014557 hasLocation W20040145572 @default.
- W2004014557 hasLocation W20040145573 @default.
- W2004014557 hasLocation W20040145574 @default.
- W2004014557 hasOpenAccess W2004014557 @default.
- W2004014557 hasPrimaryLocation W20040145571 @default.
- W2004014557 hasRelatedWork W1982456117 @default.
- W2004014557 hasRelatedWork W1989920940 @default.
- W2004014557 hasRelatedWork W2018292391 @default.
- W2004014557 hasRelatedWork W2091984925 @default.
- W2004014557 hasRelatedWork W2096753949 @default.
- W2004014557 hasRelatedWork W2962874483 @default.
- W2004014557 hasRelatedWork W3080441280 @default.
- W2004014557 hasRelatedWork W3103780039 @default.
- W2004014557 hasRelatedWork W4244465134 @default.
- W2004014557 hasRelatedWork W4249580765 @default.
- W2004014557 hasVolume "304" @default.
- W2004014557 isParatext "false" @default.
- W2004014557 isRetracted "false" @default.
- W2004014557 magId "2004014557" @default.
- W2004014557 workType "article" @default.