Matches in SemOpenAlex for { <https://semopenalex.org/work/W2004037647> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2004037647 abstract "Human activities analyses based on sensor data are gaining much importance. Of particular importance are those situations where man-machine interaction needs to be studied. The detection of risk induced while driving and customizing the insurance premium accordingly is an appropriate example. For such, the individuals are induced to utilize their personally owned smartphones in order to collect data and share them with insurance companies. The traditional approach counts the number of harsh events and infers the risk induced. However, such event-based inference is not necessarily a suitable approach for understanding each individual's propensity to indulge in high risk maneuvers. We propose an alternate method where a statistical route is adopted for quantifying risk propensity as well as a comparative analysis amongst a peer-group of drivers. A relatively moderate scale experimental test bed had been deployed by collecting driving related data (using their smartphones) from approximately 50 volunteers, fora duration of two months at a stretch. The experiment was unsupervised and the relative assessment is dependent on the quantity and quality of the collected data for each driver. In our model, the acceleration profiles displayed by each driver for every completed trip are observed to extract statistical features like 'Skewness squared' and 'Kurtosis'. It is observed that the kurtosis of the acceleration profiles stores major information about the driving styles. Subsequently, we have used statistical techniques to identify trends in data and used it to quantify the nature of the driving style. A comparative analysis within the peer-group (people with similar demographic features and similar work responsibilities) is done to judge individual propensities. It is envisaged that such application can be used to induce road safety through competitive spirit; additionally a large enterprise will find this tool useful to encourage employees to move towards a safe and fulfilling lifestyle. In this paper, we present the initial results of the above mentioned exercise using a smaller subset of the collected data." @default.
- W2004037647 created "2016-06-24" @default.
- W2004037647 creator A5004819329 @default.
- W2004037647 creator A5015757476 @default.
- W2004037647 creator A5064706997 @default.
- W2004037647 creator A5067842016 @default.
- W2004037647 date "2015-01-01" @default.
- W2004037647 modified "2023-09-27" @default.
- W2004037647 title "Smartphone based estimation of relative risk propensity for inducing good driving behavior" @default.
- W2004037647 cites W2083863819 @default.
- W2004037647 cites W2092532377 @default.
- W2004037647 cites W2135801466 @default.
- W2004037647 cites W2146439206 @default.
- W2004037647 cites W4256633373 @default.
- W2004037647 doi "https://doi.org/10.1145/2800835.2804392" @default.
- W2004037647 hasPublicationYear "2015" @default.
- W2004037647 type Work @default.
- W2004037647 sameAs 2004037647 @default.
- W2004037647 citedByCount "7" @default.
- W2004037647 countsByYear W20040376472016 @default.
- W2004037647 countsByYear W20040376472017 @default.
- W2004037647 countsByYear W20040376472018 @default.
- W2004037647 countsByYear W20040376472022 @default.
- W2004037647 crossrefType "proceedings-article" @default.
- W2004037647 hasAuthorship W2004037647A5004819329 @default.
- W2004037647 hasAuthorship W2004037647A5015757476 @default.
- W2004037647 hasAuthorship W2004037647A5064706997 @default.
- W2004037647 hasAuthorship W2004037647A5067842016 @default.
- W2004037647 hasConcept C105795698 @default.
- W2004037647 hasConcept C117896860 @default.
- W2004037647 hasConcept C121332964 @default.
- W2004037647 hasConcept C122342681 @default.
- W2004037647 hasConcept C134261354 @default.
- W2004037647 hasConcept C154945302 @default.
- W2004037647 hasConcept C166963901 @default.
- W2004037647 hasConcept C2776214188 @default.
- W2004037647 hasConcept C33923547 @default.
- W2004037647 hasConcept C41008148 @default.
- W2004037647 hasConcept C74650414 @default.
- W2004037647 hasConcept C87007009 @default.
- W2004037647 hasConceptScore W2004037647C105795698 @default.
- W2004037647 hasConceptScore W2004037647C117896860 @default.
- W2004037647 hasConceptScore W2004037647C121332964 @default.
- W2004037647 hasConceptScore W2004037647C122342681 @default.
- W2004037647 hasConceptScore W2004037647C134261354 @default.
- W2004037647 hasConceptScore W2004037647C154945302 @default.
- W2004037647 hasConceptScore W2004037647C166963901 @default.
- W2004037647 hasConceptScore W2004037647C2776214188 @default.
- W2004037647 hasConceptScore W2004037647C33923547 @default.
- W2004037647 hasConceptScore W2004037647C41008148 @default.
- W2004037647 hasConceptScore W2004037647C74650414 @default.
- W2004037647 hasConceptScore W2004037647C87007009 @default.
- W2004037647 hasLocation W20040376471 @default.
- W2004037647 hasOpenAccess W2004037647 @default.
- W2004037647 hasPrimaryLocation W20040376471 @default.
- W2004037647 hasRelatedWork W1539998288 @default.
- W2004037647 hasRelatedWork W1574312866 @default.
- W2004037647 hasRelatedWork W2038734509 @default.
- W2004037647 hasRelatedWork W2044242407 @default.
- W2004037647 hasRelatedWork W2171342382 @default.
- W2004037647 hasRelatedWork W2315884303 @default.
- W2004037647 hasRelatedWork W2924248731 @default.
- W2004037647 hasRelatedWork W3125340750 @default.
- W2004037647 hasRelatedWork W3138787001 @default.
- W2004037647 hasRelatedWork W4247364450 @default.
- W2004037647 isParatext "false" @default.
- W2004037647 isRetracted "false" @default.
- W2004037647 magId "2004037647" @default.
- W2004037647 workType "article" @default.