Matches in SemOpenAlex for { <https://semopenalex.org/work/W2004084911> ?p ?o ?g. }
- W2004084911 endingPage "22321" @default.
- W2004084911 startingPage "22314" @default.
- W2004084911 abstract "The synaptotagmin-like protein homologue lacking C2 domains-a (Slac2-a)/melanophilin was recently identified as the “missing link” between the small GTPase Rab27A and the actin-based motor protein myosin Va. Although formation of a tripartite protein complex by three molecules had been shown to be required for proper melanosome distribution in melanocytes (Kuroda, T. S., Ariga, H., and Fukuda, M. (2003) Mol. Cell. Biol. 23, 5245-5255), the regulatory mechanisms of the complex (i.e. assembly and disassembly of the complex) had never been elucidated. In this study, we discovered that Slac2-a and a closely related isoform, Slac2-c/MyRIP, contain multiple PEST-like sequences (potential signals for rapid protein degradation) in the myosin Va- and actin-binding domains at the C terminus. We found that the C-terminal domain of Slac2-a is highly sensitive to low concentrations of proteases, such as trypsin and calpain, in vitro, whereas the N-terminal Rab27A-binding domain is highly resistant to these proteases. We further found that endogenous calpains selectively cleave Slac2-a, but not Rab27A or myosin Va, in melanocytes. A mutant Slac2-a lacking one of the PEST-like sequences located at the interface between the myosin Va- and actin-binding domains (ΔPEST; amino acids 399-405) is more stable than the wild-type protein, both in vitro and in melanocytes. Expression of the mutant Slac2-a-ΔPEST with an N-terminal green fluorescence protein tag often induced perinuclear aggregation of melanosomes (∼40% of the transfected cells) compared with the wild-type Slac2-a. Our findings suggest that protein degradation of Slac2-a is an essential process for proper melanosome distribution in melanocytes. The synaptotagmin-like protein homologue lacking C2 domains-a (Slac2-a)/melanophilin was recently identified as the “missing link” between the small GTPase Rab27A and the actin-based motor protein myosin Va. Although formation of a tripartite protein complex by three molecules had been shown to be required for proper melanosome distribution in melanocytes (Kuroda, T. S., Ariga, H., and Fukuda, M. (2003) Mol. Cell. Biol. 23, 5245-5255), the regulatory mechanisms of the complex (i.e. assembly and disassembly of the complex) had never been elucidated. In this study, we discovered that Slac2-a and a closely related isoform, Slac2-c/MyRIP, contain multiple PEST-like sequences (potential signals for rapid protein degradation) in the myosin Va- and actin-binding domains at the C terminus. We found that the C-terminal domain of Slac2-a is highly sensitive to low concentrations of proteases, such as trypsin and calpain, in vitro, whereas the N-terminal Rab27A-binding domain is highly resistant to these proteases. We further found that endogenous calpains selectively cleave Slac2-a, but not Rab27A or myosin Va, in melanocytes. A mutant Slac2-a lacking one of the PEST-like sequences located at the interface between the myosin Va- and actin-binding domains (ΔPEST; amino acids 399-405) is more stable than the wild-type protein, both in vitro and in melanocytes. Expression of the mutant Slac2-a-ΔPEST with an N-terminal green fluorescence protein tag often induced perinuclear aggregation of melanosomes (∼40% of the transfected cells) compared with the wild-type Slac2-a. Our findings suggest that protein degradation of Slac2-a is an essential process for proper melanosome distribution in melanocytes. Melanosomes are the specialized organelles that produce and store melanin pigments and are responsible for the pigmentation of mammalian hair and skin. Mature melanosomes are transported from the cell body of melanocytes to the tips of their dendrites by two distinct motors (i.e. a microtubule-dependent motor and an actin-dependent movement). Finally, melanosomes are translocated from the dendrites of the melanocytes into adjacent epidermal keratinocytes (reviewed in Refs. 1Marks M.S. Seabra M.C. Nat. Rev. Mol. Cell Biol. 2001; 2: 738-748Crossref PubMed Scopus (358) Google Scholar and 2Jimbow K. Park J.S. Kato F. Hirosaki K. Toyofuku K. Hua C. Yamashita T. Pigm. Cell Res. 2000; 13: 222-229Crossref PubMed Scopus (110) Google Scholar). Melanosome transfer from the microtubles to actin filaments must be a crucial step for melanosome transport in melanocytes, because defects in this step cause pigment dilution in the skin and hair in human diseases (e.g. Griscelli syndrome) and the corresponding coat-color mutant mice (e.g. dilute, ashen, and leaden) (1Marks M.S. Seabra M.C. Nat. Rev. Mol. Cell Biol. 2001; 2: 738-748Crossref PubMed Scopus (358) Google Scholar, 3Pastural E. Barrat F.J. Dufourcq-Lagelouse R. Certain S. Sanal O. Jabado N. Seger R. Griscelli C. Fischer A. de Saint Basile G. Nat. Genet. 1997; 16: 289-292Crossref PubMed Scopus (369) Google Scholar, 4Ménasché G. Pastural E. Feldmann J. Certain S. Ersoy F. Dupuis S. Wulffraat N. Bianchi D. Fischer A. Le Deist F. de Saint Basile G. Nat. Genet. 2000; 25: 173-176Crossref PubMed Scopus (757) Google Scholar, 5Ménasché G. Ho C.H. Sanal O. Feldmann J. Tezcan I. Ersoy F. Houdusse A. Fischer A. de Saint Basile G. J. Clin. Investig. 2003; 112: 450-456Crossref PubMed Scopus (260) Google Scholar, 6Mercer J.A. Seperack P.K. Strobel M.C. Copeland N.G. Jenkins N.A. Nature. 1991; 349: 709-713Crossref PubMed Scopus (458) Google Scholar, 7Wilson S.M. Yip R. Swing D.A. O'Sullivan T.N. Zhang Y. Novak E.K. Swank R.T. Russell L.B. Copeland N.G. Jenkins N.A. Proc. Natl. Acad. Sci. U. S. A. 2000; 97: 7933-7938Crossref PubMed Scopus (341) Google Scholar, 8Matesic L.E. Yip R. Reuss A.E. Swing D.A. O'Sullivan T.N. Fletcher C.F. Copeland N.G. Jenkins N.A. Proc. Natl. Acad. Sci. U. S. A. 2001; 98: 10238-10243Crossref PubMed Scopus (209) Google Scholar). The results of recent genetic analyses of these mutant animals and biochemical studies of their gene products have indicated that a tripartite protein complex formed by myosin Va (dilute gene product), Slac2-a/melanophilin (GS3/leaden gene product), 1The abbreviations used are: Slp(s), synaptotagmin-like protein(s); ABD, actin-binding domain; GFP, green fluorescence protein; HA, hemagglutinin; HRP, horseradish peroxidase; MBD, myosin Va-binding domain; SHD, Slp homology domain. and Rab27A (ashen gene product) is essential for melanosome transfer from the perinuclear region of melanocytes to their actin-rich cell periphery (9Fukuda M. Kuroda T.S. Mikoshiba K. J. Biol. Chem. 2002; 277: 12432-12436Abstract Full Text Full Text PDF PubMed Scopus (300) Google Scholar, 10Wu X.S. Rao K. Zhang H. Wang F. Sellers J.R. Matesic L.E. Copeland N.G. Jenkins N.A. Hammer III, J.A. Nat. Cell Biol. 2002; 4: 271-278Crossref PubMed Scopus (385) Google Scholar, 11Strom M. Hume A.N. Tarafder A.K. Barkagianni E. Seabra M.C. J. Biol. Chem. 2002; 277: 25423-25430Abstract Full Text Full Text PDF PubMed Scopus (265) Google Scholar, 12Hume A.N. Collinson L.M. Hopkins C.R. Strom M. Barral D.C. Bossi G. Griffiths G.M. Seabra M.C. Traffic. 2002; 3: 193-202Crossref PubMed Scopus (133) Google Scholar, 13Provance Jr., D.W. James T.L. Mercer J.A. Traffic. 2002; 3: 124-132Crossref PubMed Scopus (113) Google Scholar, 14Nagashima K. Torii S. Yi Z. Igarashi M. Okamoto K. Takeuchi T. Izumi T. FEBS Lett. 2002; 517: 233-238Crossref PubMed Scopus (120) Google Scholar, 15Ménasché G. Feldmann J. Houdusse A. Desaymard C. Fischer A. Goud B. de Saint Basile G. Blood. 2003; 101: 2736-2742Crossref PubMed Scopus (84) Google Scholar, 16Bahadoran P. Busca R. Chiaverini C. Westbroek W. Lambert J. Bille K. Valony G. Fukuda M. Naeyaert J.M. Ortonne J.P. Ballotti R. J. Biol. Chem. 2003; 278: 11386-11392Abstract Full Text Full Text PDF PubMed Scopus (49) Google Scholar, 17Kuroda T.S. Ariga H. Fukuda M. Mol. Cell. Biol. 2003; 23: 5245-5255Crossref PubMed Scopus (109) Google Scholar, 18Fukuda M. Kuroda T.S. J. Cell Sci. 2004; 117: 583-591Crossref PubMed Scopus (42) Google Scholar; reviewed in Refs. 19Hammer III, J.A. Wu X.S. Curr. Opin. Cell Biol. 2002; 14: 69-75Crossref PubMed Scopus (124) Google Scholar and 20Fukuda M. Recent Res. Dev. Neurochem. 2002; 5: 297-309Google Scholar). Slac2-a functions as a linker protein between myosin Va and Rab27A and directly and simultaneously binds the GTP-bound form of Rab27A on the melanosome via the N-terminal synaptotagmin-like protein (Slp) 1The abbreviations used are: Slp(s), synaptotagmin-like protein(s); ABD, actin-binding domain; GFP, green fluorescence protein; HA, hemagglutinin; HRP, horseradish peroxidase; MBD, myosin Va-binding domain; SHD, Slp homology domain. homology domain (referred to as SHD or RBD27 (Rab binding domain specific for Rab27 isoforms)) (9Fukuda M. Kuroda T.S. Mikoshiba K. J. Biol. Chem. 2002; 277: 12432-12436Abstract Full Text Full Text PDF PubMed Scopus (300) Google Scholar, 10Wu X.S. Rao K. Zhang H. Wang F. Sellers J.R. Matesic L.E. Copeland N.G. Jenkins N.A. Hammer III, J.A. Nat. Cell Biol. 2002; 4: 271-278Crossref PubMed Scopus (385) Google Scholar, 11Strom M. Hume A.N. Tarafder A.K. Barkagianni E. Seabra M.C. J. Biol. Chem. 2002; 277: 25423-25430Abstract Full Text Full Text PDF PubMed Scopus (265) Google Scholar, 14Nagashima K. Torii S. Yi Z. Igarashi M. Okamoto K. Takeuchi T. Izumi T. FEBS Lett. 2002; 517: 233-238Crossref PubMed Scopus (120) Google Scholar, 17Kuroda T.S. Ariga H. Fukuda M. Mol. Cell. Biol. 2003; 23: 5245-5255Crossref PubMed Scopus (109) Google Scholar, 21Fukuda M. Mikoshiba K. Biochem. Biophys. Res. Commun. 2001; 281: 1226-1233Crossref PubMed Scopus (80) Google Scholar, 22Fukuda M. Saegusa C. Mikoshiba K. Biochem. Biophys. Res. Commun. 2001; 283: 513-519Crossref PubMed Scopus (68) Google Scholar, 23Kuroda T.S. Fukuda M. Ariga H. Mikoshiba K. J. Biol. Chem. 2002; 277: 9212-9218Abstract Full Text Full Text PDF PubMed Scopus (175) Google Scholar, 24Kuroda T.S. Fukuda M. Ariga H. Mikoshiba K. Biochem. Biophys. Res. Commun. 2002; 293: 899-906Crossref PubMed Scopus (65) Google Scholar, 25Fukuda M. J. Biol. Chem. 2002; 277: 40118-40124Abstract Full Text Full Text PDF PubMed Scopus (68) Google Scholar, 26Fukuda M. J. Biol. Chem. 2003; 278: 15373-15380Abstract Full Text Full Text PDF PubMed Scopus (157) Google Scholar) and myosin Va, an actin-based motor protein, via the large C-terminal domain (9Fukuda M. Kuroda T.S. Mikoshiba K. J. Biol. Chem. 2002; 277: 12432-12436Abstract Full Text Full Text PDF PubMed Scopus (300) Google Scholar, 10Wu X.S. Rao K. Zhang H. Wang F. Sellers J.R. Matesic L.E. Copeland N.G. Jenkins N.A. Hammer III, J.A. Nat. Cell Biol. 2002; 4: 271-278Crossref PubMed Scopus (385) Google Scholar, 11Strom M. Hume A.N. Tarafder A.K. Barkagianni E. Seabra M.C. J. Biol. Chem. 2002; 277: 25423-25430Abstract Full Text Full Text PDF PubMed Scopus (265) Google Scholar, 14Nagashima K. Torii S. Yi Z. Igarashi M. Okamoto K. Takeuchi T. Izumi T. FEBS Lett. 2002; 517: 233-238Crossref PubMed Scopus (120) Google Scholar, 17Kuroda T.S. Ariga H. Fukuda M. Mol. Cell. Biol. 2003; 23: 5245-5255Crossref PubMed Scopus (109) Google Scholar, 18Fukuda M. Kuroda T.S. J. Cell Sci. 2004; 117: 583-591Crossref PubMed Scopus (42) Google Scholar, 27Fukuda M. Kuroda T.S. J. Biol. Chem. 2002; 277: 43096-43103Abstract Full Text Full Text PDF PubMed Scopus (142) Google Scholar). The interaction between Slac2-a and myosin Va is strengthened by the presence of a melanocyte-specific exon F in the tail domain of myosin Va (18Fukuda M. Kuroda T.S. J. Cell Sci. 2004; 117: 583-591Crossref PubMed Scopus (42) Google Scholar, 27Fukuda M. Kuroda T.S. J. Biol. Chem. 2002; 277: 43096-43103Abstract Full Text Full Text PDF PubMed Scopus (142) Google Scholar, 28Seperack P.K. Mercer J.A. Strobel M.C. Copeland N.G. Jenkins N.A. EMBO J. 1995; 14: 2326-2332Crossref PubMed Scopus (115) Google Scholar, 29Huang J.D. Mermall V. Strobel M.C. Russell L.B. Mooseker M.S. Copeland N.G. Jenkins N.A. Genetics. 1998; 148: 1963-1972Crossref PubMed Google Scholar, 30Wu X. Wang F. Rao K. Sellers J.R. Hammer III, J.A. Mol. Biol. Cell. 2002; 13: 1735-1749Crossref PubMed Scopus (140) Google Scholar, 31da Silva Bizario J.C. da Cunha Nascimento A.A. Casaletti L. Patussi E.V. Chociay M.F. Larson R.E. Espreafico E.M. Cell Motil. Cytoskeleton. 2002; 51: 57-75Crossref PubMed Scopus (10) Google Scholar). Although the formation of a tripartite protein complex is widely believed to be essential for melanosome transfer from microtubules to actin filaments in mammalian melanocytes, almost nothing is known about the mechanism of disassembly of the complex after the transfer of melanosomes to actin filaments. Phosphorylation of myosin Va may be involved in detachment from melanosomes (or Slac2-a), as has been shown in Xenopus laevis eggs (32Karcher R.L. Roland J.T. Zappacosta F. Huddleston M.J. Annan R.S. Carr S.A. Gelfand V.I. Science. 2001; 293: 1317-1320Crossref PubMed Scopus (120) Google Scholar), or certain GTPase-activating protein for Rab27A may be involved in this process through conversion of GTP-Rab27A to GDP-Rab27A. In this study, we discovered that Slac2-a contains multiple PEST-like sequences in the C-terminal domain that are known to be sensitive to proteases such as calpains (33Dice J.F. FASEB J. 1987; 1: 349-357Crossref PubMed Scopus (197) Google Scholar, 34Rechsteiner M. Rogers S.W. Trends Biochem. Sci. 1996; 21: 267-271Abstract Full Text PDF PubMed Scopus (1420) Google Scholar) and we found that Slac2-a, but not Rab27A or myosin Va, is selectively degraded by endogenous calpains in melanocytes. We also found that expression of green fluorescence protein (GFP)-tagged Slac2-a lacking one of the PEST-like sequences (ΔPEST) often caused perinuclear aggregation of melanosomes in melan-a cells. Based on our findings, together with the fact that yeast Vac17p, a linker protein of the yeast class V myosin Myo2p contains a functional PEST sequence (35Tang F. Kauffman E.J. Novak J.L. Nau J.J. Catlett N.L. Weisman L.S. Nature. 2003; 422: 87-92Crossref PubMed Scopus (102) Google Scholar, 36Ishikawa K. Catlett N.L. Novak J.L. Tang F. Nau J.J. Weisman L.S. J. Cell Biol. 2003; 160: 887-897Crossref PubMed Scopus (88) Google Scholar), we discuss the convergent evolution of the cargo receptor for class V myosins in membrane trafficking. Materials—μ-Calpain, calpastatin peptide, and calpain inhibitor III were obtained from Calbiochem-Novachem Corp. Trypsin, thrombin, and horseradish peroxidase (HRP)-conjugated anti-FLAG tag (M2) mouse monoclonal antibody were obtained form Sigma Chemical Co. (St. Louis, MO). HRP-conjugated anti-hemagglutinin (HA) tag and HRP-conjugated anti-T7 tag mouse monoclonal antibodies were from Roche Molecular Biochemicals and Novagen (Madison, WI), respectively. Anti-actin goat polyclonal antibody was from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA). Texas Red-conjugated phalloidin was from Molecular Probes Inc. (Eugene, OR). Anti-Slac2-a-SHD, anti-Slac2-a-ABD, anti-Rab27A, and anti-myosin Va rabbit polyclonal antibodies were prepared as described previously (9Fukuda M. Kuroda T.S. Mikoshiba K. J. Biol. Chem. 2002; 277: 12432-12436Abstract Full Text Full Text PDF PubMed Scopus (300) Google Scholar, 27Fukuda M. Kuroda T.S. J. Biol. Chem. 2002; 277: 43096-43103Abstract Full Text Full Text PDF PubMed Scopus (142) Google Scholar, 37Fukuda M. Kanno E. Yamamoto A. J. Biol. Chem. 2004; 279: 13065-13075Abstract Full Text Full Text PDF PubMed Scopus (80) Google Scholar, 38Imai A. Yoshie S. Nashida T. Shimomura H. Fukuda M. J. Cell Sci. 2004; 117: 1945-1953Crossref PubMed Scopus (94) Google Scholar). Plasmid Construction—Addition of the FLAG tag sequence to the C terminus of T7-Slac2-a was essentially performed by PCR as described previously (39Fukuda M. Ibata K. Mikoshiba K. J. Neurochem. 2001; 77: 730-740Crossref PubMed Scopus (25) Google Scholar). A mutant Slac2-a lacking a PEST-like sequence (amino acids 399-405; named ΔPEST) was produced by two-step PCR techniques by using the following mutagenic oligonucleotides having an artificial KpnI site (underlined) as described previously (40Fukuda M. Kojima T. Aruga J. Niinobe M. Mikoshiba K. J. Biol. Chem. 1995; 270: 26523-26527Abstract Full Text Full Text PDF PubMed Scopus (162) Google Scholar): 5′-GGTACCATCTGGCTTGGTGGAACCACTGATGTTGCTGG-3′ (ΔPEST primer 1; antisense) and 5′-GGTACCTTCCTTGGAGGGTC-3′ (ΔPEST primer 2; sense). The mutant Slac2-a-ΔPEST fragment was then subcloned into the modified pEF-T7 expression vector (41Fukuda M. Aruga J. Niinobe M. Aimoto S. Mikoshiba K. J. Biol. Chem. 1994; 269: 29206-29211Abstract Full Text PDF PubMed Google Scholar, 42Fukuda M. Mikoshiba K. J. Biol. Chem. 2000; 275: 28180-28185Abstract Full Text Full Text PDF PubMed Scopus (64) Google Scholar, 43Fukuda M. Kanno E. Mikoshiba K. J. Biol. Chem. 1999; 274: 31421-31427Abstract Full Text Full Text PDF PubMed Scopus (146) Google Scholar) (named pEF-T7-Slac2-a-ΔPEST) or the pEGFP-C1 vector (BD Biosciences Clontech) (named pEGFP-C1-Slac2-a-ΔPEST). Other expression constructs (pEF-T7-Slp3-a, pEF-T7-Slac2-c, pEF-HA-Rab27A, and pEF-FLAG-myosin Va-tail) were produced as described previously (9Fukuda M. Kuroda T.S. Mikoshiba K. J. Biol. Chem. 2002; 277: 12432-12436Abstract Full Text Full Text PDF PubMed Scopus (300) Google Scholar, 23Kuroda T.S. Fukuda M. Ariga H. Mikoshiba K. J. Biol. Chem. 2002; 277: 9212-9218Abstract Full Text Full Text PDF PubMed Scopus (175) Google Scholar, 27Fukuda M. Kuroda T.S. J. Biol. Chem. 2002; 277: 43096-43103Abstract Full Text Full Text PDF PubMed Scopus (142) Google Scholar). The myosin Va-tail used in this study contains a melanocyte-specific exon F (28Seperack P.K. Mercer J.A. Strobel M.C. Copeland N.G. Jenkins N.A. EMBO J. 1995; 14: 2326-2332Crossref PubMed Scopus (115) Google Scholar, 29Huang J.D. Mermall V. Strobel M.C. Russell L.B. Mooseker M.S. Copeland N.G. Jenkins N.A. Genetics. 1998; 148: 1963-1972Crossref PubMed Google Scholar). Limited Proteolysis of Slac2 and Slp3-a by Trypsin and Thrombin— Recombinant T7-tagged Slac2 (or Slp3-a) protein was expressed in COS-7 cells and purified with the anti-T7 tag antibody-conjugated agarose (Novagen) essentially as described previously (42Fukuda M. Mikoshiba K. J. Biol. Chem. 2000; 275: 28180-28185Abstract Full Text Full Text PDF PubMed Scopus (64) Google Scholar, 43Fukuda M. Kanno E. Mikoshiba K. J. Biol. Chem. 1999; 274: 31421-31427Abstract Full Text Full Text PDF PubMed Scopus (146) Google Scholar), but all procedures were performed in the absence of any protease inhibitors. Purified proteins were incubated at 25 °C for 30 min with various concentrations of trypsin (see Fig. 1A) or 1 unit of thrombin in 50 mm HEPES-KOH, pH 7.2. Digested proteins were then analyzed by 10% SDS-PAGE, followed by immunoblotting with HRP-conjugated anti-T7 tag (or anti-FLAG tag) antibody as described previously (43Fukuda M. Kanno E. Mikoshiba K. J. Biol. Chem. 1999; 274: 31421-31427Abstract Full Text Full Text PDF PubMed Scopus (146) Google Scholar). Digestion of Slac2-a by Calpains—Recombinant T7-Slac2-a-FLAG protein was incubated at 30 °C for 15 min with various concentrations of μ-calpain in the presence or absence of 750 μm Ca2+ (Fig. 3, A and B). Digested proteins were then analyzed by 10% SDS-PAGE followed by immunoblotting with HRP-conjugated anti-T7 tag (or anti-FLAG tag) antibody (43Fukuda M. Kanno E. Mikoshiba K. J. Biol. Chem. 1999; 274: 31421-31427Abstract Full Text Full Text PDF PubMed Scopus (146) Google Scholar). Melan-a cells (one 10-cm dish at confluence) were homogenized in 500 μl of a buffer (50 mm HEPES-KOH, pH 7.2, 1 mm MgCl2, and 150 mm NaCl) without any protease inhibitors in a glass-Teflon Potter homogenizer with 10 strokes at 1000 rpm, and proteins were solubilized with 1% Triton X-100 at 4 °C for 1 h. After removing the insoluble material by centrifugation at 15,000 rpm for 10 min, cell lysates were incubated at 30 °C for 15 min, 30 min, or 1 h with either 2 mm EGTA or 750 μm Ca2+ in the presence or absence of calpain inhibitors (10 μm calpastatin peptide or 10 μm calpain inhibitor III). Reactions were terminated by adding SDS sample buffer and boiling for 3 min. Protein expression levels of Rab27A, Salc2-a, myosin Va, and actin were analyzed by immunoblotting with specific antibodies as described previously (9Fukuda M. Kuroda T.S. Mikoshiba K. J. Biol. Chem. 2002; 277: 12432-12436Abstract Full Text Full Text PDF PubMed Scopus (300) Google Scholar, 27Fukuda M. Kuroda T.S. J. Biol. Chem. 2002; 277: 43096-43103Abstract Full Text Full Text PDF PubMed Scopus (142) Google Scholar). The intensity of the bands on x-ray films was quantified with Lane Analyzer (version 3.0) (ATTO, Tokyo, Japan). Miscellaneous Procedures—The immortalized melanocyte cell line melan-a (generous gift of Dorothy C. Bennett) was cultured as described previously (17Kuroda T.S. Ariga H. Fukuda M. Mol. Cell. Biol. 2003; 23: 5245-5255Crossref PubMed Scopus (109) Google Scholar, 44Bennett D.C. Cooper P.J. Hart I.R. Int. J. Cancer. 1987; 39: 414-418Crossref PubMed Scopus (402) Google Scholar). Transfection of pEGFP-C1-Slac2-a into melan-a cells with FuGENE 6 (Roche Molecular Biochemicals), immunocytochemistry with Texas-Red phalloidin, and the melanosome aggregation assay were performed as described previously (17Kuroda T.S. Ariga H. Fukuda M. Mol. Cell. Biol. 2003; 23: 5245-5255Crossref PubMed Scopus (109) Google Scholar, 18Fukuda M. Kuroda T.S. J. Cell Sci. 2004; 117: 583-591Crossref PubMed Scopus (42) Google Scholar). The cells were examined for fluorescence and by bright-field images with a confocal fluorescence microscope (Fluoview; Olympus, Tokyo, Japan). The melanosome distribution of the transfected cells (“dispersed” indicates a normal peripheral distribution of melanosomes (Fig. 6A, top right); “aggregated” means accumulation of melanosomes in the perinuclear regions (Fig. 6A, bottom right) was evaluated as described previously (17Kuroda T.S. Ariga H. Fukuda M. Mol. Cell. Biol. 2003; 23: 5245-5255Crossref PubMed Scopus (109) Google Scholar). Plasmids were transfected into COS-7 cells (7.5 × 105 cells/10 cm-dish, the day before transfection) with LipofectAMINE Plus reagent (Invitrogen) according to the manufacturer's notes. T7-Slac2-a proteins were immunoprecipitated with anti-T7 tag antibody-conjugated agarose as described previously (42Fukuda M. Mikoshiba K. J. Biol. Chem. 2000; 275: 28180-28185Abstract Full Text Full Text PDF PubMed Scopus (64) Google Scholar, 43Fukuda M. Kanno E. Mikoshiba K. J. Biol. Chem. 1999; 274: 31421-31427Abstract Full Text Full Text PDF PubMed Scopus (146) Google Scholar). SDS-PAGE and immunoblotting analyses with HRP-conjugated anti-FLAG tag, anti-HA tag, anti-actin, and anti-T7 tag antibodies were also performed as described previously (17Kuroda T.S. Ariga H. Fukuda M. Mol. Cell. Biol. 2003; 23: 5245-5255Crossref PubMed Scopus (109) Google Scholar, 27Fukuda M. Kuroda T.S. J. Biol. Chem. 2002; 277: 43096-43103Abstract Full Text Full Text PDF PubMed Scopus (142) Google Scholar, 43Fukuda M. Kanno E. Mikoshiba K. J. Biol. Chem. 1999; 274: 31421-31427Abstract Full Text Full Text PDF PubMed Scopus (146) Google Scholar). The blots shown in this article are representative of at least two or three independent experiments. Slac2-a Is Highly Sensitive to Proteases—In a previous study, we found that both recombinant Slac2-a and Slac2-c proteins usually contained a variety of degradation products when expressed in cultured cells (27Fukuda M. Kuroda T.S. J. Biol. Chem. 2002; 277: 43096-43103Abstract Full Text Full Text PDF PubMed Scopus (142) Google Scholar) (Figs. 1A, lane 1, and 3C, lane 1). Because the recombinant Slp1-5 proteins were expressed and purified with little contamination by degradation products (Fig. 1C, lane 1, and Refs. 23Kuroda T.S. Fukuda M. Ariga H. Mikoshiba K. J. Biol. Chem. 2002; 277: 9212-9218Abstract Full Text Full Text PDF PubMed Scopus (175) Google Scholar and 24Kuroda T.S. Fukuda M. Ariga H. Mikoshiba K. Biochem. Biophys. Res. Commun. 2002; 293: 899-906Crossref PubMed Scopus (65) Google Scholar), Slac2-a proteins should be less stable than Slp proteins in living cells and more sensitive to proteases, and we performed limited proteolysis experiments with trypsin to test this hypothesis (25Fukuda M. J. Biol. Chem. 2002; 277: 40118-40124Abstract Full Text Full Text PDF PubMed Scopus (68) Google Scholar, 45Fukuda M. Yamamoto A. Mikoshiba K. J. Biol. Chem. 2001; 276: 41112-41119Abstract Full Text Full Text PDF PubMed Scopus (29) Google Scholar). As shown in Fig. 1, A and B, recombinant T7-Slac2-a-FLAG protein was easily digested with 100 ng/ml trypsin at 25 °C for 30 min. To our surprise, however, monitoring the degradation of T7-Slac2-a-FLAG protein with anti-T7 tag antibody (i.e. detection of the N-terminal domain of Slac2-a) yielded three major tryptic fragments (Fig. 1A, sites 1-3, open arrowheads), whereas monitoring the degradation of T7-Slac2-a-FLAG protein with anti-FLAG tag antibody (i.e. detection of the C-terminal domain of Slac2-a) yielded only a single band corresponding to the full-length protein (Fig. 1B, lanes 1-4). The recombinant Slp3-a protein, on the other hand, was highly resistant to trypsin (up to 250 ng/ml). Similar results were obtained when the anti-Slac2-a-SHD and the anti-Slac2-a-actin-binding domain (ABD) antibodies were used to detect the N-terminal and C-terminal domains, respectively, of Slac2-a (data not shown). These results indicated that the C-terminal ABD was highly sensitive to and rapidly degraded by trypsin, whereas the N-terminal SHD of Slac2-a was highly stable. It was interesting that the recombinant T7-Slac2-a-FLAG protein was also highly sensitive to thrombin digestion (Fig. 1A, lane 7), and the digestion pattern of T7-Slac2-a-FLAG with thrombin was very similar to the pattern obtained with trypsin. Again, we detected three major fragments with the anti-T7 tag antibody and no signals with the anti-FLAG tag antibody (Fig. 1, compare lane 7 in A and B), suggesting that both trypsin and thrombin cleave the same Arg-X residues in Slac2-a. The recombinant Slp3-a, on the other hand, was highly resistant to thrombin digestion (Fig. 1C, lane 7). Slac2-a Contains PEST-like Sequences Cleaved by μ-calpain in Vitro—The results of the limited proteolysis experiments described above clearly indicated that Slac2-a (and possibly Slac2-c) protein should contain specific sequences that are highly sensitive to proteases. After a careful sequence comparison between Slac2-a and Slac2-c combined with data base searching, we found that the C-terminal domain of Slac2-a (i.e. myosin Va-binding domain (MBD) and ABD) contains multiple PEST-like sequences (potential signals for rapid protein degradation) (33Dice J.F. FASEB J. 1987; 1: 349-357Crossref PubMed Scopus (197) Google Scholar, 34Rechsteiner M. Rogers S.W. Trends Biochem. Sci. 1996; 21: 267-271Abstract Full Text PDF PubMed Scopus (1420) Google Scholar) that consist of four amino acids: Pro, Glu, Ser, and Thr (Fig. 2, A and B). It should be noted that the Pro, Glu, Ser, and Thr residues account for more than 40% of the total number of amino acids in the MBD and that the putative proteolytic cleavage sites would be mapped within the MBD (Fig. 2A, arrowheads). By contrast, the four residues amounted to only 21% of the residues in the SHD, a finding that is consistent with the fact that the SHD is highly resistant to the proteases used in this study. Because PEST sequences are often cleaved by calpains (reviewed in Refs. 33Dice J.F. FASEB J. 1987; 1: 349-357Crossref PubMed Scopus (197) Google Scholar, 34Rechsteiner M. Rogers S.W. Trends Biochem. Sci. 1996; 21: 267-271Abstract Full Text PDF PubMed Scopus (1420) Google Scholar, and 46Goll D.E. Thompson V.F. Li H. Wei W. Cong J. Physiol. Rev. 2003; 83: 731-801Crossref PubMed Scopus (2414) Google Scholar), we next tested the effect of Ca2+-dependent μ-calpain on the stability of Slac2-a in vitro (Fig. 3, A and B). As expected, μ-calpain attacked the C-terminal domain of T7-Slac2-a-FLAG in a Ca2+-dependent manner; 50 nm μ-calpain was sufficient to degrade the C-terminal domain of Slac2-a, whereas a concentration of μ-calpain (500 nm) 10 times higher was required for degradation of the N-terminal domain (Fig. 3A, site 1). Likewise, recombinant Slac2-c was also easily cleaved by μ-calpain in the presence of Ca2+ (Fig. 3C) Selective Degradation of the Native Slac2-a Molecule by Endogenous Calpains in Melanocytes—To further determine whether Slac2-a protein is a molecular target of endogenous calpains in melanocytes, we prepared total cell lysates of melan-a cells without using protease inhibitors. When the total cell lysates were incubated at 30 °C for 15 or 30 min in the presence or absence of 750 μm Ca2+, endogenous Slac2-a protein was rapidly degraded within 15 min only in the presence of Ca2+ (Fig. 4A, closed arrowhead; compare lanes 1-3 and 4-6). Consistent with the results of the limited proteolysis experiments described above (Figs. 1A and 3A), we detected immunoreactive bands corresponding to the N-terminal domain of native Slac2-a molecule (i.e. Slac2-a-SHD is highly resistant to proteases) (Fig. 4A, asterisk). By contrast, however, the intensity of the immunoreactive bands of Rab27A, myosin Va, and actin was unaltered by treatment with Ca2+ for 1 h under our experimental conditions (Fig. 4, B, top, third, and fourth panels, respectively, and C), although the tail domain of myosin Va is known to contain a PEST sequence (47Reck-Peterson S.L. Provance Jr., D.W. Mooseker M.S. Mercer J.A. Biochim. Biophys. Acta. 2000; 1496: 36-51Crossref PubMed Scopus (244) Google Scholar). In addition, we did not observe any significant differences in the protein composition of the total cell lysates visualized with Amido Black staining (Fig. 4B, bottom). Because the selective loss of Slac2-a protein as a result of exposure to Ca2+ was completely abolished by simultaneous exposure to two different calpain inhibitors (i.e. calpastatin peptide and calpain inhibitor III), we concluded t" @default.
- W2004084911 created "2016-06-24" @default.
- W2004084911 creator A5006129467 @default.
- W2004084911 creator A5090092776 @default.
- W2004084911 date "2004-05-14" @default.
- W2004084911 modified "2023-10-11" @default.
- W2004084911 title "Slac2-a/Melanophilin Contains Multiple PEST-like Sequences That Are Highly Sensitive to Proteolysis" @default.
- W2004084911 cites W1489286522 @default.
- W2004084911 cites W1544609822 @default.
- W2004084911 cites W1594981163 @default.
- W2004084911 cites W1602061583 @default.
- W2004084911 cites W1717049970 @default.
- W2004084911 cites W1867638637 @default.
- W2004084911 cites W1964620242 @default.
- W2004084911 cites W1970512089 @default.
- W2004084911 cites W1971377895 @default.
- W2004084911 cites W1978132453 @default.
- W2004084911 cites W1980413852 @default.
- W2004084911 cites W1981528650 @default.
- W2004084911 cites W1983792693 @default.
- W2004084911 cites W1986334743 @default.
- W2004084911 cites W1987945386 @default.
- W2004084911 cites W1997876679 @default.
- W2004084911 cites W2005960222 @default.
- W2004084911 cites W2008157742 @default.
- W2004084911 cites W2016201659 @default.
- W2004084911 cites W2016437048 @default.
- W2004084911 cites W2023326798 @default.
- W2004084911 cites W2024782877 @default.
- W2004084911 cites W2030300486 @default.
- W2004084911 cites W2041513765 @default.
- W2004084911 cites W2048159584 @default.
- W2004084911 cites W2049616876 @default.
- W2004084911 cites W2049657352 @default.
- W2004084911 cites W2050213416 @default.
- W2004084911 cites W2052295372 @default.
- W2004084911 cites W2053632669 @default.
- W2004084911 cites W2060035117 @default.
- W2004084911 cites W2067618437 @default.
- W2004084911 cites W2070209666 @default.
- W2004084911 cites W2081500438 @default.
- W2004084911 cites W2081762479 @default.
- W2004084911 cites W2089157318 @default.
- W2004084911 cites W2089913733 @default.
- W2004084911 cites W2096369586 @default.
- W2004084911 cites W2098185580 @default.
- W2004084911 cites W2110278844 @default.
- W2004084911 cites W2114268618 @default.
- W2004084911 cites W2115139120 @default.
- W2004084911 cites W2128444868 @default.
- W2004084911 cites W2134492570 @default.
- W2004084911 cites W2134695594 @default.
- W2004084911 cites W2137684418 @default.
- W2004084911 cites W2139951075 @default.
- W2004084911 cites W2154103258 @default.
- W2004084911 cites W2156189210 @default.
- W2004084911 cites W2169436026 @default.
- W2004084911 cites W2170296662 @default.
- W2004084911 cites W311907553 @default.
- W2004084911 doi "https://doi.org/10.1074/jbc.401791200" @default.
- W2004084911 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15145961" @default.
- W2004084911 hasPublicationYear "2004" @default.
- W2004084911 type Work @default.
- W2004084911 sameAs 2004084911 @default.
- W2004084911 citedByCount "28" @default.
- W2004084911 countsByYear W20040849112012 @default.
- W2004084911 countsByYear W20040849112013 @default.
- W2004084911 countsByYear W20040849112014 @default.
- W2004084911 countsByYear W20040849112015 @default.
- W2004084911 countsByYear W20040849112016 @default.
- W2004084911 countsByYear W20040849112017 @default.
- W2004084911 countsByYear W20040849112018 @default.
- W2004084911 countsByYear W20040849112020 @default.
- W2004084911 countsByYear W20040849112021 @default.
- W2004084911 crossrefType "journal-article" @default.
- W2004084911 hasAuthorship W2004084911A5006129467 @default.
- W2004084911 hasAuthorship W2004084911A5090092776 @default.
- W2004084911 hasBestOaLocation W20040849111 @default.
- W2004084911 hasConcept C181199279 @default.
- W2004084911 hasConcept C185592680 @default.
- W2004084911 hasConcept C22508944 @default.
- W2004084911 hasConcept C2781307694 @default.
- W2004084911 hasConcept C55493867 @default.
- W2004084911 hasConcept C59822182 @default.
- W2004084911 hasConcept C86803240 @default.
- W2004084911 hasConceptScore W2004084911C181199279 @default.
- W2004084911 hasConceptScore W2004084911C185592680 @default.
- W2004084911 hasConceptScore W2004084911C22508944 @default.
- W2004084911 hasConceptScore W2004084911C2781307694 @default.
- W2004084911 hasConceptScore W2004084911C55493867 @default.
- W2004084911 hasConceptScore W2004084911C59822182 @default.
- W2004084911 hasConceptScore W2004084911C86803240 @default.
- W2004084911 hasIssue "21" @default.
- W2004084911 hasLocation W20040849111 @default.
- W2004084911 hasOpenAccess W2004084911 @default.
- W2004084911 hasPrimaryLocation W20040849111 @default.
- W2004084911 hasRelatedWork W1531601525 @default.
- W2004084911 hasRelatedWork W2319480705 @default.