Matches in SemOpenAlex for { <https://semopenalex.org/work/W2004133582> ?p ?o ?g. }
- W2004133582 abstract "Abstract Evaluation of steam-assisted gravity drainage (SAGD) performance that involves detailed compositional simulations is usually deterministic, cumbersome, expensive (manpower and time consuming), and not quite suitable for practical decision making and forecasting, particularly when dealing with high-dimensional data space consisting of large number of operational and geological parameters. Data-driven modeling techniques, which entail comprehensive data analysis and implementation of machine learning methods for system forecast, provide an attractive alternative. In this paper, artificial neural network (ANN) is employed to predict SAGD production in heterogeneous reservoirs, an important application that is lacking in existing literature. Numerical flow simulations are performed to construct a training data set consists of various attributes describing characteristics associated with reservoir heterogeneities and other relevant operating parameters. Empirical Arps decline parameters are tested successfully for parameterization of cumulative production profile and considered as outputs of the ANN models. Sensitivity studies on network configurations are also investigated. Principal components analysis (PCA) is performed to reduce the dimensionality of the input vector, improve prediction quality, and limit over-fitting. In a case study, reservoirs with distinct heterogeneity distributions are fed to the model. It is shown that robustness and accuracy of the prediction capability are greatly enhanced when cluster analysis are performed to identify internal data structures and groupings prior to ANN modeling. Both deterministic and fuzzy-based clustering techniques are compared, and separate ANN model is constructed for each cluster. The model is then verified using a testing data set (cases that have not been used during the training stage). The proposed approach can be integrated directly into most existing reservoir management routines. In addition, incorporating techniques for dimensionality reduction and clustering with ANN demonstrates the viability of this approach for analyzing large field data set. Given that quantitative ranking of operating areas, robust forecasting, and optimization of heavy oil recovery processes are major challenges faced by the industry, the proposed research highlights the significant potential of applying effective data-driven modeling approaches in analyzing other solvent-additive steam injection projects." @default.
- W2004133582 created "2016-06-24" @default.
- W2004133582 creator A5004951074 @default.
- W2004133582 creator A5018957484 @default.
- W2004133582 creator A5079537222 @default.
- W2004133582 creator A5090525883 @default.
- W2004133582 date "2014-06-10" @default.
- W2004133582 modified "2023-09-27" @default.
- W2004133582 title "An Integrated Application of Cluster Analysis and Artificial Neural Networks for SAGD Recovery Performance Prediction in Heterogeneous Reservoirs" @default.
- W2004133582 cites W1493454437 @default.
- W2004133582 cites W18858627 @default.
- W2004133582 cites W1976509667 @default.
- W2004133582 cites W1981008593 @default.
- W2004133582 cites W1986880669 @default.
- W2004133582 cites W1987971958 @default.
- W2004133582 cites W1988793519 @default.
- W2004133582 cites W1990368529 @default.
- W2004133582 cites W1990476081 @default.
- W2004133582 cites W1990826942 @default.
- W2004133582 cites W1990893622 @default.
- W2004133582 cites W1997235858 @default.
- W2004133582 cites W1998349408 @default.
- W2004133582 cites W2004601679 @default.
- W2004133582 cites W2005726493 @default.
- W2004133582 cites W2008561762 @default.
- W2004133582 cites W2009950164 @default.
- W2004133582 cites W2012173597 @default.
- W2004133582 cites W2013219821 @default.
- W2004133582 cites W2014682740 @default.
- W2004133582 cites W2016451901 @default.
- W2004133582 cites W2016951851 @default.
- W2004133582 cites W2023840662 @default.
- W2004133582 cites W2025924882 @default.
- W2004133582 cites W2026532985 @default.
- W2004133582 cites W2026593176 @default.
- W2004133582 cites W2027067114 @default.
- W2004133582 cites W2027693022 @default.
- W2004133582 cites W2033672252 @default.
- W2004133582 cites W2033904036 @default.
- W2004133582 cites W2037325453 @default.
- W2004133582 cites W2038648432 @default.
- W2004133582 cites W2050570866 @default.
- W2004133582 cites W2051787883 @default.
- W2004133582 cites W2058441237 @default.
- W2004133582 cites W2059846335 @default.
- W2004133582 cites W2060598872 @default.
- W2004133582 cites W2068992358 @default.
- W2004133582 cites W2073819036 @default.
- W2004133582 cites W2076579537 @default.
- W2004133582 cites W2078146557 @default.
- W2004133582 cites W2081397508 @default.
- W2004133582 cites W2082280104 @default.
- W2004133582 cites W2083241398 @default.
- W2004133582 cites W2088238688 @default.
- W2004133582 cites W2093206231 @default.
- W2004133582 cites W2098379698 @default.
- W2004133582 cites W2113076747 @default.
- W2004133582 cites W2116280911 @default.
- W2004133582 cites W4211007335 @default.
- W2004133582 doi "https://doi.org/10.2118/170113-ms" @default.
- W2004133582 hasPublicationYear "2014" @default.
- W2004133582 type Work @default.
- W2004133582 sameAs 2004133582 @default.
- W2004133582 citedByCount "7" @default.
- W2004133582 countsByYear W20041335822014 @default.
- W2004133582 countsByYear W20041335822015 @default.
- W2004133582 countsByYear W20041335822016 @default.
- W2004133582 countsByYear W20041335822017 @default.
- W2004133582 countsByYear W20041335822018 @default.
- W2004133582 countsByYear W20041335822019 @default.
- W2004133582 countsByYear W20041335822021 @default.
- W2004133582 crossrefType "proceedings-article" @default.
- W2004133582 hasAuthorship W2004133582A5004951074 @default.
- W2004133582 hasAuthorship W2004133582A5018957484 @default.
- W2004133582 hasAuthorship W2004133582A5079537222 @default.
- W2004133582 hasAuthorship W2004133582A5090525883 @default.
- W2004133582 hasConcept C104317684 @default.
- W2004133582 hasConcept C111030470 @default.
- W2004133582 hasConcept C119857082 @default.
- W2004133582 hasConcept C124101348 @default.
- W2004133582 hasConcept C127413603 @default.
- W2004133582 hasConcept C154945302 @default.
- W2004133582 hasConcept C185592680 @default.
- W2004133582 hasConcept C21200559 @default.
- W2004133582 hasConcept C24326235 @default.
- W2004133582 hasConcept C27438332 @default.
- W2004133582 hasConcept C41008148 @default.
- W2004133582 hasConcept C50644808 @default.
- W2004133582 hasConcept C55493867 @default.
- W2004133582 hasConcept C63479239 @default.
- W2004133582 hasConcept C73555534 @default.
- W2004133582 hasConceptScore W2004133582C104317684 @default.
- W2004133582 hasConceptScore W2004133582C111030470 @default.
- W2004133582 hasConceptScore W2004133582C119857082 @default.
- W2004133582 hasConceptScore W2004133582C124101348 @default.
- W2004133582 hasConceptScore W2004133582C127413603 @default.
- W2004133582 hasConceptScore W2004133582C154945302 @default.
- W2004133582 hasConceptScore W2004133582C185592680 @default.
- W2004133582 hasConceptScore W2004133582C21200559 @default.
- W2004133582 hasConceptScore W2004133582C24326235 @default.