Matches in SemOpenAlex for { <https://semopenalex.org/work/W2004200900> ?p ?o ?g. }
- W2004200900 endingPage "196" @default.
- W2004200900 startingPage "188" @default.
- W2004200900 abstract "A novel method coupling particle swarm optimization algorithm (PSO) and genetic algorithm (GA) was proposed to optimize simultaneously the kernel parameters of support vector machine (SVM) and determine the optimized features subset. By coupling GA with PSO, the particles produced in each generation in PSO algorithm were processed by crossover and mutation of GA, and then the particles could keep diversity to escape from local optima and find the global optima quickly and accurately. In order to evaluate the proposed method, four peptide datasets were employed for the investigation of quantitative structure–activity relationship (QSAR). The structural and physicochemical features of peptides from amino acid sequences were used to represent peptides for QSAR. The correlation coefficients (R) of training set of the four datasets were 1.0000, 0.9508, 1.0000, 0.9995, the R of test set of the four datasets were 0.9922, 0.9687, 0.9022, 0.7404, respectively. The root-mean-square errors (RMSEs) of training set of the four datasets were 0.0000, 0.0986, 0.0000, 0.0203, the RMSEs of test set of the four datasets were 0.2522, 0.2782, 0.9625, 0.2928, respectively. A protein dataset, which consists of 277 proteins, was also employed to evaluate the current method for predicting protein structural class, and the good results of overall success rate were obtained. The results indicated that the proposed method might hold a high potential to become a useful tool in peptide QSAR and protein prediction research." @default.
- W2004200900 created "2016-06-24" @default.
- W2004200900 creator A5022746338 @default.
- W2004200900 creator A5056979762 @default.
- W2004200900 creator A5069441124 @default.
- W2004200900 creator A5076602989 @default.
- W2004200900 date "2010-09-01" @default.
- W2004200900 modified "2023-10-06" @default.
- W2004200900 title "QSAR modeling of peptide biological activity by coupling support vector machine with particle swarm optimization algorithm and genetic algorithm" @default.
- W2004200900 cites W1496604422 @default.
- W2004200900 cites W1966163582 @default.
- W2004200900 cites W1968295354 @default.
- W2004200900 cites W1969302426 @default.
- W2004200900 cites W1970060238 @default.
- W2004200900 cites W1975586526 @default.
- W2004200900 cites W1976044372 @default.
- W2004200900 cites W1978508948 @default.
- W2004200900 cites W1979691979 @default.
- W2004200900 cites W1980497258 @default.
- W2004200900 cites W1980690213 @default.
- W2004200900 cites W1980739931 @default.
- W2004200900 cites W1990798780 @default.
- W2004200900 cites W1999334142 @default.
- W2004200900 cites W2000780514 @default.
- W2004200900 cites W2004362273 @default.
- W2004200900 cites W2007698848 @default.
- W2004200900 cites W2014722063 @default.
- W2004200900 cites W2015813363 @default.
- W2004200900 cites W2016851920 @default.
- W2004200900 cites W2021945571 @default.
- W2004200900 cites W2023306209 @default.
- W2004200900 cites W2023400093 @default.
- W2004200900 cites W2029178553 @default.
- W2004200900 cites W2031770098 @default.
- W2004200900 cites W2033165902 @default.
- W2004200900 cites W2035250366 @default.
- W2004200900 cites W2042084565 @default.
- W2004200900 cites W2044573154 @default.
- W2004200900 cites W2045911289 @default.
- W2004200900 cites W2052611179 @default.
- W2004200900 cites W2055287694 @default.
- W2004200900 cites W2064320380 @default.
- W2004200900 cites W2066622802 @default.
- W2004200900 cites W2075006095 @default.
- W2004200900 cites W2080653934 @default.
- W2004200900 cites W2090727353 @default.
- W2004200900 cites W2093354844 @default.
- W2004200900 cites W2093379781 @default.
- W2004200900 cites W2094403468 @default.
- W2004200900 cites W2122987693 @default.
- W2004200900 cites W2138913996 @default.
- W2004200900 cites W2149315344 @default.
- W2004200900 cites W2152681556 @default.
- W2004200900 cites W2154373030 @default.
- W2004200900 cites W4213345021 @default.
- W2004200900 cites W4239510810 @default.
- W2004200900 cites W4249920046 @default.
- W2004200900 cites W86661845 @default.
- W2004200900 doi "https://doi.org/10.1016/j.jmgm.2010.06.002" @default.
- W2004200900 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20621530" @default.
- W2004200900 hasPublicationYear "2010" @default.
- W2004200900 type Work @default.
- W2004200900 sameAs 2004200900 @default.
- W2004200900 citedByCount "30" @default.
- W2004200900 countsByYear W20042009002012 @default.
- W2004200900 countsByYear W20042009002013 @default.
- W2004200900 countsByYear W20042009002014 @default.
- W2004200900 countsByYear W20042009002015 @default.
- W2004200900 countsByYear W20042009002016 @default.
- W2004200900 countsByYear W20042009002017 @default.
- W2004200900 countsByYear W20042009002018 @default.
- W2004200900 countsByYear W20042009002020 @default.
- W2004200900 countsByYear W20042009002021 @default.
- W2004200900 countsByYear W20042009002022 @default.
- W2004200900 countsByYear W20042009002023 @default.
- W2004200900 crossrefType "journal-article" @default.
- W2004200900 hasAuthorship W2004200900A5022746338 @default.
- W2004200900 hasAuthorship W2004200900A5056979762 @default.
- W2004200900 hasAuthorship W2004200900A5069441124 @default.
- W2004200900 hasAuthorship W2004200900A5076602989 @default.
- W2004200900 hasConcept C11413529 @default.
- W2004200900 hasConcept C114614502 @default.
- W2004200900 hasConcept C119857082 @default.
- W2004200900 hasConcept C122507166 @default.
- W2004200900 hasConcept C12267149 @default.
- W2004200900 hasConcept C127413603 @default.
- W2004200900 hasConcept C131584629 @default.
- W2004200900 hasConcept C141934464 @default.
- W2004200900 hasConcept C154945302 @default.
- W2004200900 hasConcept C164126121 @default.
- W2004200900 hasConcept C169903167 @default.
- W2004200900 hasConcept C177264268 @default.
- W2004200900 hasConcept C199360897 @default.
- W2004200900 hasConcept C33923547 @default.
- W2004200900 hasConcept C41008148 @default.
- W2004200900 hasConcept C74193536 @default.
- W2004200900 hasConcept C78519656 @default.
- W2004200900 hasConcept C85617194 @default.