Matches in SemOpenAlex for { <https://semopenalex.org/work/W2004209042> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W2004209042 endingPage "336" @default.
- W2004209042 startingPage "336" @default.
- W2004209042 abstract "Let M be a smooth manifold with tangent bundle TM. A k-plane field (or k-distribution) on M is a k-dimensional subbundle a of TM. Equivalently let a denote the section of the Grassmann bundle Gk(M) of k-planes associated to TM whose value at e M is the k-plane ax c TM,. Two k-plane fields are homotopic if they are homotopic as sections of Gk(M). Homotopic k-plane fields are equivalent as k-plane bundles over M, but not conversely. If L is an injectively immersed, smooth submanifold of M such that TLX = ax c TMx for all e L, L is called an integral submanifold of a. A kplane field a is called completely integrable if the following three equivalent conditions are satisfied. A. M is covered by open sets U with local coordinates x1, * , x such that the submanifolds defined by xk+l = constant, * * *, xm = constant are integral submanifolds of a. B. a is smooth and through every point e M there is an integral submanifold L of a. C. a is smooth and if X and Y are vector fields on M with Xx, Yx C ax for all e M then the bracket [X, Y]x e ax. The equivalence of these conditions is the Frobenius theorem. An integrable k-plane field is also called a foliation (this is equivalent to other definitions) and the maximal connected integral submanifolds are called leaves. The leaves of a foliation partition the manifold. The existence theorem for ordinary differential equations says that smooth line-fields are always integrable. In general for k > 1 the set of kplane fields which are not integrable is open and dense in the space of sections of Gk(M). G. Reeb [16] has asked if the existence of a k-plane field on a manifold implies the existence of a foliation. He has given an example of a foliation of codimension one on S3. W. B. R. Lickorish [10] and, independently, S. P. Novikov and H. Zeischang have exhibited foliations of codimension one on any closed, orientable 3-manifold. In ? 4 we consider the unorientable" @default.
- W2004209042 created "2016-06-24" @default.
- W2004209042 creator A5087328761 @default.
- W2004209042 date "1969-03-01" @default.
- W2004209042 modified "2023-09-23" @default.
- W2004209042 title "Foliations on 3-Manifolds" @default.
- W2004209042 cites W1509036934 @default.
- W2004209042 cites W1966102645 @default.
- W2004209042 cites W1980777192 @default.
- W2004209042 cites W1998671630 @default.
- W2004209042 cites W2041064634 @default.
- W2004209042 cites W2050091273 @default.
- W2004209042 cites W2059654406 @default.
- W2004209042 cites W2102585356 @default.
- W2004209042 cites W2110998654 @default.
- W2004209042 cites W2123642523 @default.
- W2004209042 cites W2316136406 @default.
- W2004209042 cites W2324782219 @default.
- W2004209042 cites W2468762483 @default.
- W2004209042 doi "https://doi.org/10.2307/1970673" @default.
- W2004209042 hasPublicationYear "1969" @default.
- W2004209042 type Work @default.
- W2004209042 sameAs 2004209042 @default.
- W2004209042 citedByCount "56" @default.
- W2004209042 countsByYear W20042090422012 @default.
- W2004209042 countsByYear W20042090422014 @default.
- W2004209042 countsByYear W20042090422015 @default.
- W2004209042 countsByYear W20042090422016 @default.
- W2004209042 countsByYear W20042090422020 @default.
- W2004209042 countsByYear W20042090422023 @default.
- W2004209042 crossrefType "journal-article" @default.
- W2004209042 hasAuthorship W2004209042A5087328761 @default.
- W2004209042 hasConcept C202444582 @default.
- W2004209042 hasConcept C33923547 @default.
- W2004209042 hasConceptScore W2004209042C202444582 @default.
- W2004209042 hasConceptScore W2004209042C33923547 @default.
- W2004209042 hasIssue "2" @default.
- W2004209042 hasLocation W20042090421 @default.
- W2004209042 hasOpenAccess W2004209042 @default.
- W2004209042 hasPrimaryLocation W20042090421 @default.
- W2004209042 hasRelatedWork W1557945163 @default.
- W2004209042 hasRelatedWork W1912064545 @default.
- W2004209042 hasRelatedWork W1985218657 @default.
- W2004209042 hasRelatedWork W2064847051 @default.
- W2004209042 hasRelatedWork W2096753949 @default.
- W2004209042 hasRelatedWork W2742285599 @default.
- W2004209042 hasRelatedWork W2963341196 @default.
- W2004209042 hasRelatedWork W3099641547 @default.
- W2004209042 hasRelatedWork W3124205579 @default.
- W2004209042 hasRelatedWork W4249580765 @default.
- W2004209042 hasVolume "89" @default.
- W2004209042 isParatext "false" @default.
- W2004209042 isRetracted "false" @default.
- W2004209042 magId "2004209042" @default.
- W2004209042 workType "article" @default.